Термическая обработка алюминиевых сплавов

Алюминий и алюминиевые сплавы, обработка алюминия ТОЧМЕХ

Все сплавы алюминия можно разделить на две группы:

    • Деформируемые алюминиевые сплавы — предназначены для получения полуфабрикатов (листов, плит, прутков, профилей, труб и т. д.), а также поковок и штамповых заготовок путем прокатки, прессования, ковки и штамповки.
    • а) Упрочняемые термической обработкой:
      • Дуралюмины, « дюраль » (Д1, Д16, Д20*, сплавы алюминия меди и марганца [Al-Cu-Mg]) — удовлетворительно обрабатываются резанием в закаленном и состаренном состояниях, но плохо в отожженном состоянии. Дуралюмины хорошо свариваются точечной сваркой и не свариваются сваркой плавлением вследствие склонности к образованию трещин. Из сплава Д16 изготовляют обшивки, шпангоуты, стрингера и лонжероны самолетов, силовые каркасы, строительные конструкции, кузова автомобилей.
      • Сплав авиаль (АВ) удовлетворительно обрабатывается резанием после закалки и старения, хорошо сваривается аргонодуговой и контактной сваркой. Из этого сплава изготовляются различные полуфабрикаты (листы, профили, трубы и т.д.), используемые для элементов конструкций, несущих умеренные нагрузки, кроме того, лопасти винтов вертолетов, кованные детали двигателей, рамы, двери, для которых требуется высокая пластичность в холодном и горячем состоянии.
      • Высокопрочный сплав (В95) имеет предел прочности 560-600 Н/мм2, хорошо обрабатывается резанием и сваривается точечной сваркой. Сплав применяется в самолетостроении для нагруженных конструкций (обшивки, стрингеры, шпангоуты, лонжероны) и для силовых каркасов в строительных сооружениях.
      • Сплавы для ковки и штамповки (АК6, АК8, АК4-1 [жаропрочный]). Сплавы этого типа отличаются высокой пластичностью и удовлетворительными литейными свойствами, позволяющими получить качественные слитки. Алюминиевые сплавы этой группы хорошо обрабатываются резанием и удовлетворительно свариваются контактной и аргонодуговой сваркой.
    • б) Не упрочняемые термической обработкой:
      • Сплавы алюминия с марганцем (АМц) и алюминия с магнием (АМг2, АМг3, АМг5, АМг6) легко обрабатываются давлением (штамповка, гибка), хорошо свариваются и обладают хорошей коррозионной стойкостью. Обработка резанием затруднена, поэтому для получения резьбы используют специальные бесстружечные метчики (раскатники), не имеющие режущих кромок.
    • Литейные алюминиевые сплавы — предназначенные для фасонного литья (как правило, хорошо обрабатываются резанием).
      • Сплавы алюминия с кремнием (силумины) Al-Si (АЛ2, АЛ4, АЛ9) отличаются высокими литейными свойствами, а отливки — большой плотностью. Силумины сравнительно легко обрабатываются резанием.
      • Сплавы алюминия с медью Al-Cu (АЛ7, АЛ19) после термической обработки имеют высокие механические свойства при нормальной и повышенных температурах и хорошо обрабатываются резанием.
      • Сплавы алюминия с магнием Al-Mg (АЛ8, АЛ27) имеют хорошую коррозионную стойкость, повышенные механические свойства и хорошо обрабатываются резанием. Сплавы применяют в судостроении и авиации.
      • Жаропрочные алюминиевые сплавы (АЛ1, АЛ21, АЛ33) хорошо обрабатываются резанием.
Читайте также:  Ремонт паяльной лампы своими руками чистка жиклера, устранение неполадок в работе насоса и промывка

С точки зрения обработки фрезерованием, нарезания резьбы и токарной обработки, алюминиевые сплавы также можно разделить на две группы. В зависимости от состояния (закаленные, состаренные, отожженные) алюминиевые сплавы могут относиться к разным группам по легкости обработки:

    • Мягкие и пластичные алюминиевые сплавы , вызывающие проблемы при обработке резанием:
    • а) Отожженные: Д16, АВ.
    • б) Не упрочняемые термической обработкой: АМц, АМг2, АМг3, АМг5, АМг6.
    • Сравнительно твердые и прочные алюминиевые сплавы , которые достаточно просто обрабатываются резанием (во многих случаях, где не требуется повышенная производительность, эти материалы могут обрабатываться стандартным инструментом общего применения, но если требуется повысить скорость и качество обработки, необходимо применять специализированный инструмент):
    • а) Закаленные и искусственно состаренные: Д16Т, Д16Н, АВТ.
    • б) Ковочные: АК6, АК8, АК4-1.
    • в) Литейные: АЛ2, АЛ4, АЛ9, АЛ8, АЛ27, АЛ1, АЛ21, АЛ33.

Другие статьи по сходной тематике

Основные понятия о токарной обработке и токарных станках.

Стали марок AISI 409, 430, 439 — аналоги отечественных марок 08×13, 12×17 и 08×17Т

Гидравлические гильотинные ножницы, гильотинные ножницы с ЧПУ для раскроя и обработки листовых материалов.

Правила нанесения обозначений шероховатости поверхностей на чертежах

Термическая обработка алюминиевых сплавов

Термическую обработку алюминиевых профилей применяют для модификации свойств алюминиевых сплавов, из которых они сделаны, путем изменения их микроструктуры. Основными упрочняющими механизмами в алюминиевых сплавах являются упрочнение за счет легирования твердого раствора и упрочнение за счет выделений вторичных фаз. Как правило, один из этих механизмов в сплаве является доминирующим.

Твердый раствор алюминиевых сплавов

Твердый раствор получают нагревом алюминиевого сплава, при котором все имеющиеся в нем фазы растворяются с образованием одной гомогенной фазы – алюминия с растворенными в нем легирующими элементами. С повышением температуры растворимость элементов увеличивается, со снижением температуры – снижается. Механизм упрочнения заключается в том, что при достаточно быстром охлаждении алюминиевого сплава растворенные элементы остаются в атомной решетке алюминия и искажают, упруго деформируют ее. Эта искаженная атомная решетка затрудняет движение дислокаций и, следовательно, пластическую деформацию сплава и тем самым повышает его механическую прочность.

Старение алюминиевых сплавов

Алюминиевые сплавы, которые упрочняются старением, содержат определенное количество растворимых легирующих элементов, например, некоторых комбинаций из меди, магния, кремния, марганца и цинка. При соответствующей термической обработке эти растворенные атомы соединяются в виде очень малых частиц, которые выделяются внутри зерен алюминиевого сплава. Этот процесс и называют старением, так он происходит «сам собой» при комнатной температуре. Для ускорения и достижения большей эффективности упрочнения алюминиевого сплава старение проводят при повышенной температуре, скажем, 200 °С.

Читайте также:  Датчик педали тормоза Гранта Где находится, замена и цена
Закалка алюминиевых профилей на прессе

Закалка на прессе является весьма экономически выгодной технологией термической обработки алюминиевых профилей по сравнению с закалкой с отдельного нагрева. При закалке на прессе охлаждение алюминиевых профилей проводят от температуры, с которой они выходят из матрицы. Необходимое условие для закалки на прессе — интервал температур нагрева алюминиевого сплава под закалку должен совпадать с интервалом температур алюминиевых профилей на выходе из пресса. Это, в принципе, выполняется только для «мягких» и «полутвердых» алюминиевых сплавов – технического алюминия, алюминиевых сплавов серий 3ххх и 6ххх, а также малолегированных сплавов серии 5ххх (с магнием до 3 %) и некоторых алюминиевых сплавов серии 7ххх без легирования медью (7020, 7005 (наш 1915), 7003). Эффект закалки для алюминиевых сплавов 3ххх и 5ххх очень незначителен и, как правило, не принимается во внимание. Окончательные механические свойства алюминиевые сплавы 3ххх и 5ххх принимают не в результате термического упрочнения, а при последующей нагартовке, что может включать и операции термической обработки: один или несколько отжигов. Упрочняющей фазой для сплавов серии 6ххх является соединение Mg2Si.

Закалка на прессе алюминиевых профилей из сплавов АД31, 6060 и 6063

Все алюминиевые сплавы серии 6ххх могут получать закалку непосредственно на прессе. Для фиксирования растворенных фаз в твердом растворе алюминия необходимо охлаждение алюминиевых профилей на выходе из пресса со скоростью не ниже некоторой критической скорости. Эта скорость зависит от химического состава алюминиевого сплава. Обычно усиленного охлаждения вентиляторами бывает достаточно для большинства алюминиевых профилей, однако иногда бывает необходимым и охлаждение их водой или смесью воздуха и воды. Успешная закалка алюминиевых сплавов серии 6ххх зависит от толщины профиля, а также от типа сплава и его химического состава. В случае чрезмерно массивных алюминиевых профилей, например, из сплава АД33 (6061) и относительно медленной скорости прессования материал на выходе из матрицы может не достигать интервала температур, необходимого для закалки и часть частиц Mg2Si останется не растворенной. Поэтому при последующем воздушном, или даже водяном, охлаждении профилей их полной закалки не получится. В таких случаях применяют отдельный нагрев под закалку в специальных печах – обычно вертикальных с последующим охлаждением в вертикальных баках с водой. После закалки алюминиевых профилей производят их растяжение на 1,5 – 3 % для правки и снятия остаточных напряжений.

Старение алюминиевых профилей: искусственное и естественное

Заключительной операцией термической обработки алюминиевых профилей является старение, естественное или искусственное. Естественное старение происходит само собой в течение некоторого времени, разного для различных алюминиевых сплавов – от нескольких недель до нескольких месяцев. Искусственное старение производят в специальных печах старения.

Читайте также:  Как сделать габариты в поворотниках ваз 2112

Термическая обработка алюминиевых сплавов по AA и BS

1. Отжиг

Типичные температуры и процедуры отжига для спецификации Алюминиевой ассоциации США (AA) ковких сплавов приводят их к О степени твердости, как следует ниже. Для серии сплавов 1ХХХ, 3ХХХ, 5ХХХ эта температура 345°С, а время выдержки и скорость охлаждения не важны. Сплав 3003 является исключением, ему требуется температура отжига 415°С. Серии сплавов 2ХХХ и 6ХХХ требуют температуру отжига 415°С с выдержкой от 2 до 3 ч и охлаждение до 260°С со скоростью около 30°С/ч. Исключением является сплав 2036 с температурой отжига 385°С. Серии сплавов 7ХХХ требуют температуру 415°С и выдержку от 2 до 3 ч. В этом случае допускается неконтролируемое охлаждение примерно до 200°С с последующим повторным нагревом до 230°С на 4 ч. Исключением является сплав 7005, требующий температуру отжига 345°С и выдержку от 2 до 3 ч с последующим охлаждением до 200°С со скоростью 30°С/ч или менее.

2. Термическая обработка литейных сплавов

В Табл. 1 приведены параметры типичных видов термической обработки, термической обработки на твердый раствор и старение для обычно применяемых литейных сплавов Алюминиевой ассоциации AA. Термическая обработка на твердый раствор, как правило, следует с закалкой в воде от 65 до 100°С. В Табл. 2 приведены аналогичные данные для литейных сплавов по британскому стандарту.

Таблица 1. Термическая обработка для литейных сплавов AA

S — песочное литье, Р — литье в постоянную пресс-форму.

Таблица 2. Термическая обработка для литейных сплавов по британскому стандарту BS

Среда закалки: W — вода, W 70…80 — вода от 70 до 80°С, О 160m — масло при максимальной температуре 160°С.

3. Термическая обработка ковких сплавов

В Табл. 3 приведены параметры термической обработки на твердый раствор и преципитатной термической обработки с конечной закалкой для обычно применяемых ковких сплавов по спецификации Алюминиевой ассоциации Америки AA. Условия закалки зависят от формы материала, например плоский лист или тянутый пруток, и от режимов обработок между обработками на твердый раствор и преципитатной. Таблица дает только указание на возможные последствия обработок. После термической обработки на твердый раствор сплавы закаляются в воде до комнатной температуры.

Таблица 3. Термическая обработка на твердый раствор и преципитатная термическая обработка

Cw — холодная обработка, SR — снято напряжение. Где возможно, ближайшие эквиваленты сплавам по британскому стандарту для степеней твердости даны в круглых скобках.

Ссылка на основную публикацию
Теплообменники для газовых колонок ремонт медных теплообменников и методы устранения поломок, полезн
Как запаять теплообменник газовой колонки своими руками при помощи паяльника, изнутри, холодной свар 2016-10-23 Евгений Фоменко Подготовка к пайке Способы...
Таблица теплопроводности строительных материалов
У каких металлов высокая теплопроводность Металлы – это вещества, имеющие кристаллическую структуру. При нагревании они способны плавиться, то есть переходить...
Таблица толщины ЛКП на автомобилях (краски); Про авто и мото
Толщина лакокрасочного покрытия автомобиля, толщиномер Качественный автомобиль — это не только хорошие детали, дорогая обивка салона и многофункциональный бортовой компьютер,...
Теплообменники, подбор теплообменников
Факторы, определяющие выбор теплообменников - Портал теплообменного оборудования Теплообменники характеризуются рядом показателей: особенностями конструкции, габаритами, массой, удобством обслуживания, условиями теплообмена,...
Adblock detector