Равные степени с разными основаниями. Правило умножение степеней с разными основаниями

Если вам нужно возвести какое-то конкретное число в степень, можете воспользоваться . А сейчас мы более подробно остановимся на свойствах степеней .

Экспоненциальные числа открывают большие возможности, они позволяют нам преобразовать умножение в сложение, а складывать гораздо легче, чем умножать.

Например, нам надо умножить 16 на 64. Произведение от умножения этих двух чисел равно 1024. Но 16 – это 4×4, а 64 – это 4х4х4. То есть 16 на 64=4x4x4x4x4, что также равно 1024.

Число 16 можно представить также в виде 2х2х2х2, а 64 как 2х2х2х2х2х2, и если произвести умножение, мы опять получим 1024.

А теперь используем правило . 16=4 2 , или 2 4 , 64=4 3 , или 2 6 , в то же время 1024=6 4 =4 5 , или 2 10 .

Следовательно, нашу задачу можно записать по-другому: 4 2 х4 3 =4 5 или 2 4 х2 6 =2 10 , и каждый раз мы получаем 1024.

Мы можем решить ряд аналогичных примеров и увидим, что умножение чисел со степенями сводится к сложению показателей степени , или экспонент, разумеется, при том условии, что основания сомножителей равны.

Таким образом, мы можем, не производя умножения, сразу сказать, что 2 4 х2 2 х2 14 =2 20 .

Это правило справедливо также и при делении чисел со степенями, но в этом случае экспонента делителя вычитается из экспоненты делимого . Таким образом, 2 5:2 3 =2 2 , что в обычных числах равно 32:8=4, то есть 2 2 . Подведем итоги:

a m х a n =a m+n , a m: a n =a m-n , где m и n — целые числа.

С первого взгляда может показаться, что такое умножение и деление чисел со степенями не очень удобно, ведь сначала надо представить число в экспоненциальной форме. Нетрудно представить в такой форме числа 8 и 16, то есть 2 3 и 2 4 , но как это сделать с числами 7 и 17? Или как поступать в тех случаях, когда число можно представить в экспоненциальной форме, но основания экспоненциальных выражений чисел сильно различаются. Например, 8×9 – это 2 3 х3 2 , и в этом случае мы не можем суммировать экспоненты. Ни 2 5 и ни 3 5 не являются ответом, ответ также не лежит в интервале между этими двумя числами.

Тогда стоит ли вообще возиться с этим методом? Безусловно стоит. Он дает огром­ные преимущества, особенно при сложных и трудоемких вычислениях.

В прошлом видеоуроке мы узнали, что степенью некоего основания называется такое выражение, которое представляет собой произведение основания на самого себя, взятого в количестве, равном показателю степени. Изучим теперь некоторые важнейшие свойства и операции степеней.

Например, умножим две разные степени с одинаковым основанием:

Представим это произведение в полном виде:

(2) 3 * (2) 2 = (2)*(2)*(2)*(2)*(2) = 32

Вычислив значение этого выражения, мы получим число 32. С другой стороны, как видно из этого же примера, 32 можно представить в виде произведения одного и того же основания (двойки), взятого в количестве 5 раз. И действительно, если пересчитать, то:

Таким образом, можно с уверенностью прийти к выводу, что:

(2) 3 * (2) 2 = (2) 5

Подобное правило успешно работает для любых показателей и любых оснований. Это свойство умножения степени вытекает из правила сохранности значения выражений при преобразованиях в произведении. При любом основании а произведение двух выражений (а)х и (а)у равно а(х + у). Иначе говоря, при произведении любых выражений с одинаковым основанием, итоговый одночлен имеет суммарную степень, образующуюся сложением степени первого и второго выражений.

Представляемое правило прекрасно работает и при умножении нескольких выражений. Главное условие - что бы основания у всех были одинаковыми. Например:

(2) 1 * (2) 3 * (2) 4 = (2) 8

Нельзя складывать степени, да и вообще проводить какие-либо степенные совместные действия с двумя элементами выражения, если основания у них являются разными.
Как показывает наше видео, в силу схожести процессов умножения и деления правила сложения степеней при произведении прекрасно передаются и на процедуру деления. Рассмотрим такой пример:

Произведем почленное преобразование выражения в полный вид и сократим одинаковые элементы в делимом и делителе:

(2)*(2)*(2)*(2)*(2)*(2) / (2)*(2)*(2)*(2) = (2)(2) = (2) 2 = 4

Конечный результат этого примера не так интересен, ведь уже в ходе его решения ясно, что значение выражения равно квадрату двойки. И именно двойка получается при вычитании степени второго выражения из степени первого.

Чтобы определить степень частного необходимо из степени делимого вычесть степень делителя. Правило работает при одинаковом основании для всех его значений и для всех натуральных степеней. В виде абстракции имеем:

(а) х / (а) у = (а) х - у

Из правила деления одинаковых оснований со степенями вытекает определение для нулевой степени. Очевидно, что следующее выражение имеет вид:

(а) х / (а) х = (а) (х - х) = (а) 0

С другой стороны, если мы произведем деление более наглядным способом, то получим:

(а) 2 / (а) 2 = (а) (а) / (а) (а) = 1

При сокращении всех видимых элементов дроби всегда получается выражение 1/1, то есть, единица. Поэтому принято считать, что любое основание, возведенное в нулевую степень, равно единице:

Вне зависимости от значения а.

Однако будет абсурдно, если 0 (при любых перемножениях дающий все равно 0) будет каким-то образом равен единице, поэтому выражение вида (0) 0 (ноль в нулевой степени) просто не имеет смысла, а к формуле (а) 0 = 1 добавляют условие: «если а не равно 0».

Решим упражнение. Найдем значение выражения:

(34) 7 * (34) 4 / (34) 11

Так как основание везде одинаково и равно 34, то итоговое значение будет иметь такое же основание со степенью (согласно вышеуказанных правил):

Иначе говоря:

(34) 7 * (34) 4 / (34) 11 = (34) 0 = 1

Ответ: выражение равно единице.

Если умножаются (или делятся) две степени, у которых разные основания, но одинаковые показатели, то их основания можно перемножить (или поделить), а показатель степени у результата оставить таким же как у множителей (или делимого и делителя).

В общем виде на математическом языке эти правила записываются так:
a m × b m = (ab) m
a m ÷ b m = (a/b) m

При делении b не может быть равно 0, то есть второе правило надо дополнить условием b ≠ 0.

Примеры:
2 3 × 3 3 = (2 × 3) 3 = 63 = 36 × 6 = 180 + 36 = 216
6 5 ÷ 3 5 = (6 ÷ 3) 5 = 2 5 = 32

Теперь на этих конкретных примерах докажем, что правила-свойства степеней с одинаковыми показателями верны. Решим данные примеры так, как будто мы не знаем о свойствах степеней:
2 3 × 3 3 = (2 × 2 × 2) × (3 × 3 × 3) = 2 × 2 × 2 × 3 × 3 × 3 = 8 × 27 = 160 + 56 = 216
65 ÷ 35 = (6 × 6 × 6 × 6 × 6) ÷ (3 × 3 × 3 × 3 × 3) == 2 × 2 × 2 × 2 × 2 = 32

Как мы видим, ответы совпали с теми, которые были получены, когда использовались правила. Знание этих правил позволяет упростить вычисления.

Обратите внимание, что выражение 2 × 2 × 2 × 3 × 3 × 3 можно представить в таком виде:
(2 × 3) × (2 × 3) × (2 × 3).

Это выражение в свою очередь есть нечто иное как (2 × 3) 3. то есть 6 3 .

Рассмотренные свойства степеней с одинаковыми показателями могут быть использованы в обратную сторону. Например, сколько будет 18 2 ?
18 2 = (3 × 3 × 2) 2 = 3 2 × 3 2 × 2 2 = 9 × 9 × 4 = 81 × 4 = 320 + 4 = 324

Свойства степеней также используются при решении примеров:
= 2 4 × 3 6 = 2 4 × 3 4 × 3 × 3 = 6 4 × 3 2 = 6 2 × 6 2 × 3 2 = (6 × 6 × 3) 2 = 108 2 = 108 × 108 = 108 (100 + 8) = 10800 + 864 = 11664

Понятие степени в математике вводится еще в 7 классе на уроке алгебры. И в дальнейшем на протяжении всего курса изучения математики это понятие активно используется в различных своих видах. Степени - достаточно трудная тема, требующая запоминания значений и умения правильно и быстро сосчитать. Для более быстрой и качественной работы со степенями математики придумали свойства степени. Они помогают сократить большие вычисления, преобразовать огромный пример в одно число в какой-либо степени. Свойств не так уж и много, и все они легко запоминаются и применяются на практике. Поэтому в статье рассмотрены основные свойства степени, а также то, где они применяются.

Свойства степени

Мы рассмотрим 12 свойств степени, в том числе и свойства степеней с одинаковыми основаниями, и к каждому свойству приведем пример. Каждое из этих свойств поможет вам быстрее решать задания со степенями, а так же спасет вас от многочисленных вычислительных ошибок.

1-е свойство.

Про это свойство многие очень часто забывают, делают ошибки, представляя число в нулевой степени как ноль.

2-е свойство.

3-е свойство.

Нужно помнить, что это свойство можно применять только при произведении чисел, при сумме оно не работает! И нельзя забывать, что это, и следующее, свойства применяются только к степеням с одинаковыми основаниями.

4-е свойство.

Если в знаменателе число возведено в отрицательную степень, то при вычитании степень знаменателя берется в скобки для правильной замены знака при дальнейших вычислениях.

Свойство работает только при делении, при вычитании не применяется!

5-е свойство.

6-е свойство.

Это свойство можно применить и в обратную сторону. Единица деленная на число в какой-то степени есть это число в минусовой степени.

7-е свойство.

Это свойство нельзя применять к сумме и разности! При возведении в степень суммы или разности используются формулы сокращенного умножения, а не свойства степени.

8-е свойство.

9-е свойство.

Это свойство работает для любой дробной степени с числителем, равным единице, формула будет та же, только степень корня будет меняться в зависимости от знаменателя степени.

Также это свойство часто используют в обратном порядке. Корень любой степени из числа можно представить, как это число в степени единица деленная на степень корня. Это свойство очень полезно в случаях, если корень из числа не извлекается.

10-е свойство.

Это свойство работает не только с квадратным корнем и второй степенью. Если степень корня и степень, в которую возводят этот корень, совпадают, то ответом будет подкоренное выражение.

11-е свойство.

Это свойство нужно уметь вовремя увидеть при решении, чтобы избавить себя от огромных вычислений.

12-е свойство.

Каждое из этих свойств не раз встретится вам в заданиях, оно может быть дано в чистом виде, а может требовать некоторых преобразований и применения других формул. Поэтому для правильного решения мало знать только свойства, нужно практиковаться и подключать остальные математические знания.

Применение степеней и их свойств

Они активно применяются в алгебре и геометрии. Степени в математике имеют отдельное, важное место. С их помощью решаются показательные уравнения и неравенства, а так же степенями часто усложняют уравнения и примеры, относящиеся к другим разделам математики. Степени помогают избежать больших и долгих расчетов, степени легче сокращать и вычислять. Но для работы с большими степенями, либо со степенями больших чисел, нужно знать не только свойства степени, а грамотно работать и с основаниями, уметь их разложить, чтобы облегчить себе задачу. Для удобства следует знать еще и значение чисел, возведенных в степень. Это сократит ваше время при решении, исключив необходимость долгих вычислений.

Особую роль понятие степени играет в логарифмах. Так как логарифм, по сути своей, и есть степень числа.

Формулы сокращенного умножения - еще один пример использования степеней. В них нельзя применять свойства степеней, они раскладываются по особым правилам, но в каждой формуле сокращенного умножения неизменно присутствуют степени.

Так же степени активно используются в физике и информатике. Все переводы в систему СИ производятся с помощью степеней, а в дальнейшем при решении задач применяются свойства степени. В информатике активно используются степени двойки, для удобства счета и упрощения восприятия чисел. Дальнейшие расчеты по переводам единиц измерения или же расчеты задач, так же, как и в физике, происходят с использованием свойств степени.

Еще степени очень полезны в астрономии, там редко можно встретить применение свойств степени, но сами степени активно используются для сокращения записи различных величин и расстояний.

Степени применяют и в обычной жизни, при расчетах площадей, объемов, расстояний.

С помощью степеней записывают очень большие и очень маленькие величины в любых сферах науки.

Показательные уравнения и неравенства

Особое место свойства степени занимают именно в показательных уравнениях и неравенствах. Эти задания очень часто встречаются, как в школьном курсе, так и на экзаменах. Все они решаются за счет применения свойств степени. Неизвестное всегда находится в самой степени, поэтому зная все свойства, решить такое уравнение или неравенство не составит труда.

Имеют одинаковые степеней, а показатели степеней неодинаковы, 2² * 2³ , то результатом будет основание степени с тем же одинаковым основанием членов произведения степеней, возведённого в показатель степени, равный сумме показателей всех перемножаемых степеней.

2² * 2³ = 2²⁺³ = 2⁵ = 32

Если члены произведения степеней имеют разные основания степеней, а показатели степеней одинаковы, например, 2³ * 5³ , то результатом будет произведение оснований этих степеней, возведённое в показатель степени, равный этому одинаковому показателю степени.

2³ * 5³ = (2*5)³ = 10³ = 1000

Если перемножаемые степени равны между собой, например, 5³ * 5³ , то результатом будет степень с основанием, равного этим одинаковым основаниям степеней, возведённое в показатель степени, равный показателю степеней, умноженного на количество этих одинаковых степеней.

5³ * 5³ = (5³)² = 5³*² = 5⁶ = 15625

Или другой пример с таким же результатом:

5² * 5² * 5² = (5²)³ = 5²*³ = 5⁶ = 15625

Источники:

  • Что такое степень с натуральным показателем
  • произведение степеней

Математические действия со степенями можно выполнять только в том случае, когда основания показателей степени одинаковы, и когда между ними стоят знаки умножения или деления. Основание показателя степени – это число, которое возводится в степень.

Инструкция

Если числа делятся друг на друга (см 1), то у (в данном примере – это число 3) появляется степень, которая образуется из вычитания показателей степени. Причем, это действие проводится впрямую: из первого показателя вычитается второй. Пример 1. Введем : (а)в, где в скобках – а - основание, за скобками – в – показатель степени. (6)5: (6)3 = (6)5-3 = (6) 2 = 6*6 = 36.Если в ответе получается число в отрицательной степени, то такое число преобразуется в обыкновенную дробь, в числителе которой стоит единица, а в знаменателе основание с полученным при разности показателем степени, только в положительном виде (со знаком плюс). Пример 2. (2) 4: (2)6 = (2) 4-6 = (2) -2 = 1/(2)2 = ¼. Деление степеней может быть записано в другом виде, через знак дроби, а не как указано в этом шаге через знак «:». От этого принцип решения не меняется, все производится точно также, только запись будет вестись со знаком горизонтальной (или косой) дроби, вместо двоеточия.Пример 3. (2) 4 /(2)6 = (2) 4-6 = (2) -2 = 1/(2)2 = ¼.

При умножении одинаковых оснований, имеющих степени, производится сложение степеней. Пример 4. (5) 2* (5)3 = (5)2+3 =(5)5 = 3125.Если показатели степеней имеют разные знаки, то их сложение проводится согласно математическим законам.Пример 5. (2)1* (2)-3 = (2) 1+(-3) = (2) -2 = 1/(2)2 = ¼.

Если основания показателей степени различаются, то скорое всего их можно привести к одному и тому же виду, путем математического преобразования. Пример 6. Пусть надо найти значение выражения: (4)2: (2)3. Зная, что число четыре можно представить как два в квадрате, решается данный пример так:(4)2: (2)3 = (2*2)2: (2)3. Далее при возведении в степень числа. Уже имеющего степень, показатели степеней умножаются друг на друга: ((2)2)2: (2)3 = (2)4: (2)3 = (2) 4-3 = (2)1 = 2.

Полезный совет

Помните, если данное основание кажется непохожим на второе основание, надо искать математический выход. Просто так разные числа не даются. Разве, что в учебнике наборщиком сделана опечатка.

Степенной формат записи числа - это сокращенная форма записи операции умножения основания на само себя. С числом, представленным в такой форме, можно осуществлять те же операции, что и с любыми другими числами, в том числе и возводить их в степень. Например, можно возвести в произвольную степень квадрат числа и получение результата на современном уровне развития техники не составит какой-либо трудности.

Вам понадобится

  • Доступ в интернет или калькулятор Windows.

Инструкция

Для возведения квадрата в степень используйте общее правило возведения в степень , уже имеющего степенной показатель. При такой операции показатели перемножаются, а основание остается прежним. Если основание обозначить как x, а исходный и дополнительный показатели - как a и b, записать это правило в общем виде можно так: (xᵃ)ᵇ=xᵃᵇ.