Где и когда зарождается графическая наука. История развития науки

В истории науки обычно выделяют две стадии: возникновения и стадию самой науки. В свою очередь, стадия возникновения науки включает в себя период донауки и преднауки.

Донаучные знания о мире отражены в мифологии. Характерной особенностью донаучного, мифологического отношения к миру является отсутствие представлений о разделении реального и нереального, объективного и субъективного, подлинного и мнимого - в нем все едино, слитно. В мифологическом сознании предмет сливается с его образом, однако этот образ мог меняться, и, в свою очередь, предмет, его отражающий, также менялся, как бы "оборачивался", претерпевая различные, в том числе и не свойственные ему, трансформации. Причиной такого восприятия мира являлась опора на чувственную наглядность, на изменчивость, нестабильность чувств, на духовно-личностное отношение к действительности.

Спустя некоторое время в рамках мифологического познания мира произошли трансформации, в результате которых сформировалось представление о действительности как о некоем "вещном", "внесубъективном" объекте, самодостаточном и обладающем внутренней организацией. Наметился важнейший для истории науки и человечества, сдвиг в восприятии мира. Появилась возможность размышлять о нём. Так совершился скачок от чувственно-слитного, антропоморфного и анимаморфного мира психической реальности к миру, в котором субъект и природный, "вещный" мир разделены, и этот, второй, не зависит от первого, а "живет" по собственным законам, познание которых основано на рациональных комплексах и аргументах и ориентировано на объективный мир.

Следующий этап развития донаучного знания определяют как переход от логоса к преднауке. Наиболее ярко этот процесс проявил себя в древневосточных цивилизациях - Египте, Месопотамии, Индии, Китае.

Модели научного познания носили эмпирический характер. Они не всегда давали точные результаты. Самое же главное, существенное их свойство в том, что создавались они с опорой на известные эмпирические (наблюдаемые) образы, а не на абстрактные понятия, что и позволяет определять их как преднаучные.

Знания в этот период возникали путем индуктивного обобщения непосредственного практического опыта, не имели дедуктивного и доказательного характера и имели целью практическое применение, то есть носили рецептурный характер.

Древневосточные знания рассматривать лишь как переходный период от донауки к науке. В дальнейшем в математике и геометрии древних греков именно этот момент достиг своего развертывания, придав им черты науки. В естествознании переход к научному изучению природы произошел лишь в XVII веке. Колыбелью подлинной науки считают античную Грецию периода наивысшего расцвета ее культуры - VI-IV вв. до н.э., а также римский период античности - III в. до н.э. - I в. н.э.

Греки многое заимствовали у египтян и вавилонян, в частности математические знания, что и позволило им совершить переход от наглядности, эмпиричности к их рациональной, теоретической обработке. Можно сказать, что они "работали" не с реальными предметами, а их моделями (математическими, геометрическими и т.д.), выделяя в них основные понятия и недоказуемые утверждения, которые они назвали аксиомами (от греч. axioma - бесспорная, не требующая доказательств истина).

Остальные знания они пытались доказать, используя также и логику, из чего выводились теоремы (от греч. theorema - рассматривать, обдумывать). Таким образом, в античной науке, в первую очередь геометрии, произошел скачок, переход от эмпиричного изучения и накопления знаний к их теоретическому исследованию. Для этого необходимо было прибегнуть не к чувственным формам доказательства знаний, а к логическим обобщениям. Необходимо было выделить исходные утверждения геометрии из всех других знаний о мире, сформулировать их в виде аксиом, а затем остальные утверждения выявить логически из аксиом или доказать как теоремы.

В отличие от Востока, где знания имели рецептурный характер, применялись для чисто практических нужд, не были систематизированы, не имели текстового оформления, строго рационально-логического обоснования, в античной культуре начала развиваться "наука доказывающая", недаром понятия "аксиома", "теорема", "лемма" - греческого происхождения.

В античности сложился иной способ построения знаний - абстрагирование от наличной практики и её систематизация, что обеспечивало предсказание ее результатов. Фундамент новой системы знаний начинает строиться по иному - не "снизу вверх", а как бы "сверху" по отношению к реальной практике и, впоследствии, с помощью ряда опосредований, проверяются созданные идеальные конструкции методом сопоставления их с предметными отношениями практики.

Чтобы понять специфику средневековой науки, необходимо знать особенности мировоззрения этой эпохи, поскольку знания о мире в то время подчинялись определенным принципам.

Заимствуя из Античности идею, согласно которой подлинное знание - это знание всеобщее, доказательное, универсальное для всех случаев жизни, средневековые схоласты указали на то, что обладать таким знанием может лишь творец, а потому изучать, познавать следует не природу и объективные законы, а "Слово Божье", переданное человеку, которое выступает универсальным орудием постижения мира. Так сложился один из ведущих принципов средневекового мировоззрения - ревеляционизм (от лат. revelatio - откровение). Принцип откровения предполагает, что существует некое всеобщее, универсальное и в то же время таинственное знание, которое необходимо людям знать для их спасения, но которым сами они овладеть не могут в силу ограниченности своего ума. Тем не менее, Бог передает знания через пророков и апостолов в Священном писании (Библии), открывает эти знания.

Однако средневековые патристы (отцы церкви) признали возможность и право интерпретации Откровения со стороны церкви, которая рассматривалась как единственный и никогда не ошибающийся толкователь. Право церкви на интерпретацию содержания Откровения оформилось в Священной традиции, закрепленной в Священном предании отцов церкви. Что же исследуется в таком случае? Исследуются не вещи или явления, а тексты, понятия. Каждая же вещь или явление рассматривается лишь как символ, дубликат текстового ее значения. Процесс познания вещи начинается с исследования понятия, ее выражающего, что обусловило такие специфические черты познавательной деятельности, как символизм (одновременно переходящий в структуру мировоззрения) и ее текстовый характер.

Кроме того, поскольку познавательная деятельность в Средневековье носит теологически-текстовый характер, это потребовало применения уже сложившегося в греческой культуре метода познания - дедуктивной логики Аристотеля, в которой наличествовала субординация понятий, отражающая иерархический ряд действительных вещей.

Приведенные установки и мировоззренческие принципы Средневековья позволяют выявить и особенности познания этого периода. Как и в Античности, оно носило созерцательный характер, настраивало на мистический и теологический лад. О познании объективных законов не могло идти и речи, а без них невозможно естествознание. Следовательно, научное познание в период Средневековья приостановилось, и многое из достижений греков оставалось невостребованным.

Из наук в Средние века достаточное развитие получила логика, которая, наряду с математикой, геометрией, риторикой, астрономией, музыкой, преподавалась в церковных школах и появившихся уже в XI веке университетах. Отмечено, что средневековые схоласты привнесли новый момент в понимание задач логики - быть не только искусством доказательства истины (и отличения от лжи), но и искусством открытия истины.

Средневековая культура и наука - явление глубоко противоречивое и специфическое. С одной стороны, Средневековье многое заимствует из Античности - созерцательность, стремление постичь суть общего, а не единичного (поскольку оно производно от общего), абстрактное теоретизирование, манипулирование абстрактными моделями и доказательствами ложного и истинного с помощью приемов логики и др.

С другой - оно порывает с Античностью - средневековых схоластов не интересует природа в отличие от античных натурфилософов, но в то же время интерес к ней в скрытой специфической форме проявляется в алхимии, астрологии, магии, что привело к зачаткам экспериментального (опытного) знания, подготовив тем самым переход к культуре и науке Возрождения и Нового Времени.

Соединение этих двух составляющих (эмпирической и теоретической деятельности) происходит только в эпоху Возрождения, что и означало возникновение науки в собственном смысле этого слова.

Предпосылки возникновения опытной науки историки находят в целом ряде факторов экономического, политического и общекультурного характера, сложившихся в Европе XIV-XV вв. К ним следует отнести разложение феодальных отношений, сопровождающееся усилением обмена товаров, переход от натурального к денежному обмену, что способствовало накоплению капитала и постепенному переходу к капиталистическим отношениям. Развитие торговли потребовало расширения сфер деятельности, освоения новых стран и континентов: географические открытия расширили горизонт видения мира средневекового европейца. Оказалось, что мир не ограничивается территорией княжеств или отдельного государства, он населен разными народами, говорящими на разных языках, имеющими свои традиции и обычаи. Возникают интерес и необходимость их изучения, а также обмен идеями (торговые отношения с арабским Востоком привели к открытию для Западной Европы натурфилософии арабов).

Средневековые университеты, ставшие впоследствии центрами науки, сыграли важную роль в процессе секуляризации (от лат. sacularis - мирской, светский), освобождения культуры от авторитета церкви, разделения философии и теологии, науки и схоластики.

У истоков становления опытной (экспериментальной) науки стоят фигуры Н. Коперника (1473-1543) и Галилео Галилея (1564-1642).

Ньютон - основатель классической механики. И хотя сегодня с позиции современной науки механистическая картина мира Ньютона кажется грубой, ограниченной, именно она дала толчок для развития теоретических и прикладных наук на последующие почти 200 лет. Ньютону мы обязаны такими понятиями, как абсолютное пространство, время, масса, сила, скорость, ускорение; он открыл законы движения физических тел, заложив основу развития науки физики.

Ньютон довел до совершенства язык математики, создав интегральное и дифференциальное исчисление, он - автор идеи корпускулярно-волновой природы света. Можно было бы и еще перечислять многое из того, что дал науке и пониманию мира этот ученый.

Остановимся на главном достижении научных изысканий Ньютона - механистической картине мира. Она содержит следующие положения:

Утверждение о том, что весь мир, Вселенная есть ничто иное, как совокупность огромного числа неделимых и неизменных частиц, перемещающихся в пространстве и времени, связанных между собой силами тяготения, передающимися от тела к телу через пустоту.

Отсюда следует, что все события жестко предопределены и подчинены законам классической механики, что дает возможность предопределять и предвычислять ход событий.

Элементарной единицей мира является атом, и все тела состоят из абсолютно твердых, неделимых, неизменных корпускул - атомов. При описании механических процессов им использовались понятия "тело" и "корпускула".

Движение атомов и тел представлялось как простое перемещение тел в пространстве и во времени. Свойства пространства и времени, в свою очередь, представлялись как неизменные и независящие от самих тел.

Можно отметить плюсы и минусы такой картины мира. К плюсам следует отнести тот факт, что она позволяла объяснить многие явления и процессы, происходящие в природе, не прибегая к мифам и религии, а из самой природы.

Что касается минусов, то их немало. К примеру, материя в механистическом истолковании Ньютона представлялась как инертная субстанция, обреченная на вечное повторение вещей; время - пустая длительность, пространство - простое "вместилище" вещества, существующее независимо ни от времени, ни от материи. Из самой картины мира был устранен познающий субъект - априорно предполагалось, что такая картина мира существует всегда, сама по себе и не зависит от средств и способов познающего субъекта.

Механистическая картина мира, методы научного объяснения природы, разработанные Ньютоном, дали мощный толчок развитию других наук, появлению новых областей знания - химии, биологии и т.д.

Огромное влияние механистическая картина мира оказала на философию - она способствовала утверждению материалистического взгляда на мир среди философов.

Однако по мере развития науки, различных ее областей (биологии, химии, геологии, самой физики) становился очевидностью факт, что механистическая картина мира не подходит для объяснения многих явлений. Так, исследуя электрическое и магнитное поля, Фарадей и Масквелл обнаружили факт, согласно которому материю можно было представить не только как вещество (в соответствии с механистическим ее толкованием), но и как электромагнитное поле. Электромагнитные процессы не могли быть сведены к механическим, и потому напрашивался вывод: не законы механики, а законы электродинамики являются основными в мироздании.

Конец XIX - начало XX вв. ознаменованы целым каскадом научных открытий, которые завершили подрыв механистической концепции Ньютона. Это открытие элементарной частицы - электрона, входящей в структуру атома (Дж. Томпсон), затем - положительно заряженной частицы - ядра внутри атома (Э. Резерфорд, 1914 г.), на основе чего была предложена планетарная модель атома: вокруг положительно заряженного ядра вращаются электроны. Резерфорд также предсказал существование и еще одной элементарной частицы внутри атома - протона (что позже и было открыто). Эти открытия перевернули существующие до сих пор представления об атоме как об элементарной, неделимой частице мироздания.

Следующий ощутимый удар по классическому естествознанию нанесла теория относительности А. Эйнштейна (1916 г.), которая показала, что пространство и время не являются абсолютными, они неразрывно связаны с материей (являются ее атрибутивными свойствами), а также связаны движением между собой.

Поистине революционным было открытие М. Планком (1900 г.) квантов - дискретных частиц или порций, лежащих в основе процесса электромагнитного излучения. Теория квантов противоречила существующей волновой и электромагнитной природе света, разработанной Д. Масквеллом, которая в свое время (конец XIX в.) привела к необходимости смены механистической картины мира на электродинамическую. Возникло противоречие в представлении о материи - или она непрерывна (волновая теория), или состоит из дискретных частиц (корпускул). Это противоречие разрешилось в 1924 г., когда физик Луи де Бройль высказал гипотезу о том, что частицам материи присущи и свойства волны (непрерывность), и свойства дискретности (квантовость). Впоследствии эксперименты подтвердили эту гипотезу, и был открыт важнейший закон природы о том, что все материальные объекты обладают и корпускулярными, и волновыми свойствами.

Перемены, привнесенные наукой XIX-XX вв., повлекли за собой целую серию технических изобретений. Если в начале XIX века на железных дорогах, фабриках, заводах использовался пар, уже в 30-е годы XIX века ему на смену приходит электричество. Далее следовали электрический телеграф, телефон, автомобили, железобетонные конструкции - одним словом, наука тесно внедряется в производство, смыкается с техникой, что привело к разительным переменам в образе жизни развитых капиталистических стран.

Огромным достижением науки XIX века является прорыв к вопросам о том, как устроена жизнь человеческого общества, подчиняется ли она неким объективным законам (как природа) или в ней действует стихия, субъективизм.

Сегодня, глядя с расстояния прожитых лет, можно сказать, что рубеж XIX-XX вв. ознаменовал переход от классической науки к неклассической (или постклассической). Их отличия можно представить в следующем виде:

Не раскрывая в деталях сущность обозначенных отличительных признаков постклассической науки (в той или иной мере это было сделано по ходу раскрытия этапов развития науки), отметим, что происшедшие в ней изменения оказали огромное влияние на мир в целом и на отношение к нему человека. Это проявляется, во-первых, в том, что в современной научно-технической эпохе не существует неких единых канонов, общепринятых стандартов в восприятии мира, его объяснении и понимании - эта открытость выражается в плюрализме идей, концепций, ценностей. Другой (второй) особенностью современной ситуации являются ускоренный ритм событий, их смысловая плотность и конфликтность. В-третьих, сложилась парадоксальная ситуация: с одной стороны, утеряна вера в разумное устройство мироздания, а с другой - прослеживается тенденция рационализации, технизации всех сторон жизни как общества, так и отдельных индивидов. Итогом этих процессов являются радикальное изменение стиля жизни, предпочтительное отношение ко всему быстротечному, меняющемуся в отличие от устойчивого, традиционного, консервативного.

наука опытная логос познание

В процессе работы над материалом были сделаны выводы о том, что понятие науки довольно обширно и имеет важное значение на протяжении своего существования. Само понятие "наука" в древности имело размытое представление и включало в себя знания, полученные из мифологии и наблюдений. Несмотря на изменения, произошедшие в Средние века, где наука стала иметь божественные предпосылки и исследования проводились под строгим надзором Церкви, было совершено несколько важных открытий. Со временем она стала включать как теоретические методы познания (логика, философия, ораторское искусство, наблюдение), так и практические (опыт, эксперимент).

Последние столетия ознаменованы обширными открытиями, научными революциями, изменениями картины мира. Здесь имеет место понятие электромагнетизма, открытие таблицы химических элементов, несовершенство и отход от классической механики, теория относительности и т.д., которые являлись переломными моментами для современных наук.

Говоря о современной науке, то, несмотря на обширное количество подразделений и накопленных за последние несколько тысяч лет знаний в различных областях познания мира, можно сделать вывод о том, что здесь не существует четкой структуры или методики в изучении окружающего мира.

Технический и прогресс и достижения в области робототехники, кибернетики и искусственного интеллекта, открытия в поисках новых источниках энергии, частиц, а также ускоренный темп жизни общества с внедрением большого количества информации, говорит о тотальном изменении стиля жизни, предпочтение всему быстротечному в отличие от устойчивого и традиционного.

Представим точки зрения на проблему

возникновения (места, времени. специфики) науки:

По Дж. Берналу, наука возникает со становлением и появлением человека (30-40 тыс. лет назад). Доказывает это следующее. Уже наличие каменного топора (любого орудия древних людей или их умений, например, использовать огонь), говорит о наличие науки. Ведь человек каменного века делал каменный топор не просто так, а используя адекватные – и в этом плане соотносящиеся с наукой – знания о реальности. Топор делался не из любых, а из определенных пород камня, форма топора также не была произвольна, но нацелена на наилучшее решение проблем рубки чего бы то ни было. Отсюда, изготовление каменного топора говорит о зачатках: минералологии, материаловедения, сопромата, эргономики,

Идея понятна: по делам их – узнаете их. Если люди кричат о дожде и считают, чем громче крикнут, тем сильнее будет дождь, то это не имеет отношение к науке, т.к. современная наука не считает, что крик человека увеличивает силу дождя. Но современный человек на базе современной науки, также как и древний человек будет делать каменный топор не из известняка, а из кремния.

- «чтобы найти наиболее ранние истоки науки нужно обратиться к периоду происхождения человека … отличие человека от животных в том, что он создает материальную, орудийную культуру» (стр. 44); «наличие стандартизированных орудий производства предполагает присутствие идеи орудия в уме делающего еще до того, как он решил его сделать … наличие частично обработанных камней говорит о работе над заготовками … потом отсюда вытекает опыт чертежа» (стр. 45); «животное, пользовавшееся орудием и огнем, твердо стало на путь превращения в человека, применяющего науку. Так же как орудия труда были основой физики и механики, так и огонь является основой химии … практическая химия – приготовление пищи» (стр. 46-47); «лук – первая используемая машина, изучение полета стрелы – начало статики» (стр. 56).

Бернал Д. Наука в истории общества. М.: ИЛ, 1956.

Можно чуть смягчить первую позицию и считать, в принципе, по тем же основаниям, что наука возникла во время неолитической революции (VIII-III тысячелетие), во время когда появилось земледелие, металлургия, гончарное производство …Новое здесь: все-таки металлургия серьезней каменного топора.

Эту точку зрения дадим так. В начале, укажет противоположную ей традицию. А потом представим позицию, на базе которой можно доказывать, что в неолитической революции была наука.

Не согласие с тем, что наука могла возникнуть в древности

Согласно распространенным и сегодня взглядам, их интенсивно обосновывали и развивали в конце 19-20 вв. Гегель, Тайлор, Фрэзер, Леви-Брюль, древние люди в целом действовали иррационально и были неспособны на связное логичное мышления. Мифологические времена берутся в классической прогрессивной схеме движения от менее совершенного к более совершенного. в частности, в области знаний. Известная историческая схема перехода от дикости к варварству, а потом к цивилизации из этой серии. Классика этого подхода – философия Гегеля, учившая о постепенном умственном развитии человечестве, человека (или о постепенном познании богом самого себя). Хорошими, читабельными, хотя и сложными примерами подобного подхода можно взять многие работы этнографов-эволюционистов того времени, например, Э.Б. Тайлора (1832-1917).

Самая известная книга Тайлора «Первобытная культура» (1871) . В ней Тайлор рассматривает как шаг за шагом совершается прогресс в духовной культуре, показывая как последовательно развиваются первобытные представления от начальных, примитивных форм к более глубоким, постепенно переходящим в известные нам религиозные представления. Начало умственного развития человечества, по Тайлору, связано с мифами. В их создании примитивные человеческие племена похожи на детей (аналогия между детьми и первыми, примитивными человеческими племенами имеет у Тайлора серьезный доказательный смысл). Основа «превращения фактов ежедневного опыта в миф есть верование в одушевление всей природы. … Даже в цивилизованных странах оно проявляется в ранних понятиях ребенка о внешнем мире, и мы не можем не заметить как это происходит. Первые существа, доступные пониманию детей, бывают существа человеческие и по преимуществу они сами. Первым объяснением всего происходящего кругом является поэтому объяснение с человеческой точки зрения, как будто стулья, палки и деревянные лошади приводятся в действие такой же личной волей, которая управляет действиями нянек, детей и котят. … ум дикаря воспроизводит состояние детского ума. Дикий туземец Бразилии готов укусить камень о который споткнулся, или стрелу, которая его поранила». С развитием человечества люди оставляют в прошлом свои примитивные представления, которые после этого могут остаться в культуре в виде пережитков, «За 18 столетий до нашего времени Овидий упоминает о народном предубеждении римлян против браков в мае, которое он не без основания объясняет тем, что на этот месяц приходились погребальные обряды Лемуралий … только злую жену в мае бери за себя … Поверье, что супружества, заключенные в мае, бывают несчастливы, живет в Англии и до настоящего времени».

В ХХ в., например, К. Леви-Строс (1908-) , представитель структурализма, демонстрирует, например, что: а) мышление «дикарей» создает огромные классификационные системы, прекрасно в них ориентируется и, в отличие от герой Ж. Верна Паганеля, соотносит теорию с практикой: «почти все мужчины с большой легкостью перечисляют специфические и описательные наименования не менее чем 450 растений, 75 птиц, почти всех змей, рыб насекомых и млекопитающих и даже 20 видов муравьев … 45 сортов съедобных грибов, в плане технологии 50 различных видов стрел … даже ребенок часто может отождествить вид дерева по мельчайшему фрагменту древесины»; б) определенную деятельность дописьменных культур нужно называть не примитивной, а первичной, ее Леви-Строс называет бриколажем, суть бриколажа – использовать сподручные средства для решения любых проблем (т.е. не ждать и не делать специализированные средства для решения именно этой группы проблем), например, так поступаем мы, когда вместо сломанной ножки шкафа используем стопку книг; в) вряд ли возможно предположить, что неолитическая революция (10-3 тысячелетия до н.э.: открытия, разработка скотоводства, земледелия, металлургического производства, гончарного дела) могла происходить без интенсивных опытов и размышлений. Отсюда недалеко и до утверждения, что наука уже возникла в эти времена.

В книге В.С. Поликарпова «История науки и техники» (Ростов-наДону, 1999) без акцентировки проводится мысль, что в древних цивилизациях существовала такая наука как наука управления. Мы не сталкивались больше с подобными взглядами. Решение: приведем логику, слова, аргументацию автора, поработаем с этим, а потом решим, оставлять ли эту точку зрения здесь или нет.

Из Поликарпова: «… необходимость организации крупных работ по строительству каналов … укорила формирование политической организации в Египте и Месопотамии, которая бы планировала и координировала коллективный труд … жреческая каста трактовала знание прежде всего как средство господства над людьми, осуществляя его поиск не сколько из бескорыстной любви к истине, сколько в целях усилений своей власти … В древнеегипетских верованиях зафиксирована структура психики в чем-то подобная предложенной Фрейдом … человека от злого Сета защищает Амон, судьбу вселенной решает Ра … Знание структуры человеческой психики позволяло жрецам управлять поведением людей… Закономерная связь знаний с властью существовала уже в деятельности первобытных колдунов … «использование специализированных знаний в целях управления и сопутствующая этому социальная дифференциация представляет собой явление более древнее, нежели государство и организованное насилие одного общественного класса над другим»… В процессе астрономических наблюдений жрецы открыли циклически повторяющиеся затмения Солнца. Эти знания использовались ими для управления обществом. Люди верили, что жрецы в предсказанные дни и часы способы погасить и вновь зажечь Солнце… «Поучение … Мерикару» - первое известное нам дидактическое сочинение, наполненное рефлексией, знанием людей и умением пользоваться словом, основными факторами в политике… власти фараона следует учиться как профессии… В Шумере специализированное знание трактовалось прежде всего как средство господства над людьми… В Шумере возникают … специализированное (теоретическое или практическое) знание для управления жизнедеятельностью общества, т.е. можно говорить о возникновении и функционировании науки. Возникновение науки в ранних цивилизациях в ранних цивилизациях органически связано с предсказанием социального будущего, оно вытекает из потребностей социального целого предвидеть путь своего развития, чтобы выработать эффективную программу управления деятельностью общественной системы … для сохранения и укрепления власти … Только потом формы и методы освоения социального бытия, общественной деятельности были применены к исследованию природы в иных социокультурных условиях.»

За что-то подобное может говорить и известный образ Мэмфорда: «самая огромная машина была создана не у нас, а в Египте – эта машина была вся египетская цивилизация, которая обеспечивала загробную жизнь фараонам, строя для них пирамиды».

Очень распространенная точка зрения – наука возникла в античности. Эта наука – математика. Родоначальник Фалес – ввел в математику доказательство. С Евклидом связывают формирование античной геометрии, где четко выражены основные требования любого математического знания (и современного в том числе): а) формирования исходных, начальных, самоочевидных или просто постулируемых аксиом; б) формирование правил вывода новой информации из этих аксиом; в) выведение из или на базе аксиом нового знания согласно правилам вывода или доказательствам.

В античности была и медицина (Гиппократ: эпилепсия, теория тела и его болезней, опыт, лечение) и т.д. и т.п. В античности Архимед почти создал современную физическую статику. Но все эти и подобны знания к науке, традиционно, не относят. Считается, что господство в античности созерцательности и определенного презрения, пренебрежения к материальному труду не позволили законно ввести в естественные науки опыт (и обеспечивающую его научную методологию), т.е. естественные науки как современные естественные науки в античности не возникли.

Очень распространенная точка зрения – наука появляется в период с 12 по 17 вв. в Западной Европе. Именно в 12 в. начали разрабатываться Р. Бэконом и Оккамом основы научного эксперимента, и были высказаны идеи о необходимости создания опытной науки. В 17 в. все это было мощно заявлено и сделано Ф. Бэконом в его «Новом Органоне», где он разработал (описал и представил всем в книге ) основы научного, эмпирического метода индукции, гарантирующего истинность науки.

+ В.С. Степин принципиально подчеркивает, что только с опытом наука стала наукой!!

В принципе, опытная наука может существовать вне пользы. Поэтому можно говорить о том, что становление науки здесь связывают только с опытом. Но, насколько мы понимаем, все, кто ставил и требовал опыта в науке, также говорили о том, что наука должна приносить пользу. В принципе, это можно подчеркнуть, как усиление позиции за опытное происхождение науки, опыт+польза, Но, хороший научный опыт может, вообще, не иметь в виду пользу. Тогда здесь можно выделять новую, специальную точку зрения на возникновение науки. Но у Бэкона и ко опыт всегда имел отношение к пользе?

Согласно марксистам, научный опыт не так гарантирует истину как применение научных знаний в реальной жизни людей, к примеру, в промышленном производстве. Т.е. опыт должна + польза (практика). Или опять же это можно давать как специфическую точку зрения, имеющую отношение к возникновению научного знания?

Наука возникла с 16-17 вв. в Западной Европе с появлением мысленного эксперимента. Для иллюстрации/объяснения данной позиции берут творчество Г. Галилея. Утверждается, что Галилей никогда не смог бы открыть свой закон свободного падения без мысленного эксперимента. Галилей никогда бы не вывел свой закон из анализа эмпирических данных, из анализа прямых данных опыта. В его время невозможно было с нужной точностью измерить результаты опытов. В частности, приводят пример того, как Галилей мог опровергнуть широко распространенное в его время представление о том, что тяжелое тело падает быстрее, чем легкое, т.е. 1 кг. быстрее, чем 1 гр. Галилей мысленно разделил 1 кг. на 1000 гр., мысленно связал их веревочками (т.е. оставил их в целом кг.) и мысленно бросил этот «связанный кг.» и 1 гр. Для мысли, очевидно, что «связанный 1 кг. по 1 гр.» и 1 гр. отдельно должны упасть одновременно. В целом говорится о том, что только через такие мысленные эксперименты новая наука могла появиться.

Пояснение. Эта точка зрения должна браться в контексте того, что если есть три яблока, то мы не имеем числа «три», если стол примерно один и тот же на протяжении часов, недель, месяце, то отсюда не выводится закон тождества формальной логики (а=а). Т.е. в этих случая мы должны видеть некий самостоятельный акт ума, независимого от опыта!!!

Наука возникает в сер. 19 века, когда наука становится социальным институтом, когда появляются в массовом порядке научные учреждения, институты, университеты, когда наука начинает тесно сотрудничать с производством, когда прибыль от науки становится весомой (Нобель), когда ученые начинают получать фиксированную зарплату. Складывается научное сообщество, появляется много научных журналов, выходит множество книг, появляются специализированные научные издательства, проходят конференции

Другими словами, наука становится наукой только тогда, когда она становится очевидной общественной силой. Только в этих условиях к ней относятся серьезно, и она может распространять свое истинное видение мира в обществе, и быть, в определенной степени, независимой от общества

В ХХ в. К. Поппер обратил внимание на то, что радость научного сообщества отделяющего научные положение от всех других, тем, что научные положения базируются на опыте, а, например, религиозные или философские нет (дерево горит – научное положение, поскольку оно проверяется в опыте; мир бесконечен – не научное, поскольку в опыте не проверяется) не до конца продуманно, поскольку, к примеру, религиозный деятель всегда подберет доказательства того, почему обещанный им конец света не наступил. Поэтому, по Попперу критерий научного знания не верификация (опытная подтверждаемость), а фальсификация – способнотсь выдержать критику. Соответственно, где есть последнее, там есть наука.

Наука даже в XXI веке не стала еще наукой, поскольку она не решила убедительно главного вопроса: исчерпывает ли научное видение мира истинное видение мира. Другими ловами, можно ли утверждать, что науку обязательно должны дополнять философия или религия, которые, в этом смысле, видят что-то более великое, общее и истинное, чем наука.

История возникновение и развитие науки

1. История возникновение и развитие науки

1.1 Возникновение и развитие науки, ее функции

1.2 Научное познание и его специфические признаки

1.3 Строение и динамика научного знания

1.4 Методология научного познания

1.5 Методы эмпирического и теоретического исследования

1.6 Этика науки

Список использованных источников

наука эмпирический теоретический ученый

1. История возникновение и развитие науки

1.1 Возникновение и развитие науки, ее функции

В древности человек, добывая себе средства к жизни, сталкивался с силами природы и получал о них первые, поверхностные знания. Миф, магия, оккультная практика, передача опыта внетеоретическим способом от человека к человеку - таковы некоторые формы донаучного знания, обеспечивавшие условия человеческого существования. Л.И. Шестов утверждал, что существуют и всегда существовали ненаучные приемы отыскания истины, которые приводили если не к самому познанию, то к его преддверию. Ненаучное понимается как разрозненное, несистематическое, неформализованное знание. Донаучное знание выступает прототипом, предпосылочной базой научного. Следует также иметь в виду, что есть сферы человеческой деятельности и отношений, которые весьма затруднительно выразить строгими нормами научной доказательности, например области нравственности, культурно-этических традиций, веры, аффектов и т.д. М. Вебер, Р. Триг, П. Фейерабенд и др., рассуждая о границах научного познания, приводили следующие аргументы.

1. Человеческая жизнедеятельность шире и богаче рационализированных ее форм, поэтому необходимы помимо научно-рациональных иные методы изучения и описания бытия и его частей.

2. Научное познание есть не только сугубо рациональный акт, но и включает в себя интуицию, творчество без осознанных логических операций.

3. Наука, развиваясь на основе собственной логики, в то же время опосредована всем социокультурным фоном и не является лишь плодом разума.

В целом, отвергается не значение науки в функционировании системы «человек - общество - природа», а ее порой чрезмерные претензии на решение различных проблем.

Удивление явилось началом философии, ибо это есть начало мысли, а возникшее по поводу многих явлений мира и тайн человека недоумение есть начало науки (точнее, пред- науки). Элементарная наука возникла тогда, когда произошло отделение умственного труда от физического и сформировалась особая группа людей - ученых, для которых научная деятельность стала профессией.

Предпосылки науки создавались в Египте, Вавилоне, Индии, Китае, Греции, Древнем Риме в форме эмпирических знаний о природе и обществе, в виде зачатков астрономии, этики, логики, математики и др. Эти зачатки сведений и знаний объединялись в рамках философии. В античности и средние века понятия «философия», «знания» и «наука» совпадали.

Центрами обучения и формирования творческих качеств ученого стали научные школы - неформальные объединения коллег. Платон создал школу-академию. В средние века появились публичные диспуты, шедшие по жесткому ритуалу. Им на смену пришел непринужденный диалог между людьми в эпоху Возрождения. В последующем формы диспута и диалога переросли в процедуры защиты диссертаций. Общение ученых с целью обмена идей ведет к приращению знаний. Бернард Шоу рассуждал: если два человека обмениваются яблоками, то у каждого остается по яблоку. Но если они передают друг другу по одной идее, то каждый из них становится богаче, обладателем двух идей. Полемика, оппонирование (открытое или скрытое) становятся катализатором работы мысли.

Наука ориентируется на поиск сущности, того, что не дано непосредственно чувствам. Необходимым стало умение реальные объекты трансформировать в идеальные, существующие в мысли, в логике рассуждений, в расчетах. Начиная с античности, функцией научной деятельности стала объяснительная (обоснование и разъяснение различных зависимостей и связей, существенных характеристик явлений, их происхождения и развития).

Идея рациональности постепенно дополнялась идеей возможности перевести идеальный объект в материальный. Предвестником опытной науки стал Р. Бэкон (XIII в.). Он критиковал схоластический метод, предлагал опираться на опыт, большое значение придавал математике, обращался к проблемам естествознания. Родился эксперимент, соединивший идеальность (теорию) и технологичность («делание руками»). Б. Рассел писал о двух интеллектуальных инструментах, конституировавших современную науку, - изобретенный греками дедуктивный метод и впервые систематически использованный Галилеем экспериментальный метод.

Наука в собственном смысле слова возникла в XVI - XVII вв., когда «наряду с эмпирическими правилами и зависимостями (которые знала и преднаука) формируется особый тип знания - теория, позволяющая получить эмпирические зависимости как следствия из теоретических постулатов». Наука, в отличие от обыденного знания, доводит изучение объектов до уровня теоретического анализа. Э. Агацци считает, что науку следует рассматривать как «теорию об определенной области объектов, а не простой набор суждений об этих объектах».

Факторами возникновения науки стали: утверждение в Западной Европе капитализма и острая потребность в росте его производительных сил, что невозможно было без привлечения знаний; подрыв господства религии и схоластически-умозрительного стиля мышления; наращивание количества фактов, которые бы подлежали описанию, систематизации и теоретическому обобщению. Самостоятельными отраслями знания стали астрономия, механика, физика, химия и другие частные науки. Наиболее выдающимися естествоиспытателями, математиками и одновременно философами в XVI - XVII вв. были Д. Бруно, Н. Коперник, Г. Галилей, И. Ньютон, Ф. Бэкон, Р. Декарт, Д. Локк, Г. Лейбниц и др.

Научная рациональность выражается прежде всего как соразмерность мира критериям разума, логики. Начиная с XVII в. рациональность становится одним из фундаментальных идеалов европейской культуры. Как социальный институт наука оформилась в XVII - XVIII вв., когда возникли первые научные общества, академии и научные журналы.

Античное и средневековое представление о космосе как конечном и иерархически упорядоченном мире в Новое время уступает место представлению о бесконечности Вселенной, о природе как совокупности естественных, причинно обусловленных, не зависящих от человека процессов. Ориентация на изучение объективного мира вещей и вещных отношений в качестве функции науки выдвигала задачу познания с целью переделки и преобразования природы. Ф. Бэкон провозглашал, что цель науки - господство над природой ради повышения благосостояния общества и совершенствования производства. Он выступал за союз философии и естествознания. Ф. Бэкон - автор афоризма «Знание - сила», в котором отразилась практическая направленность новой науки. Адекватной этой задаче формой организации знания явилась рационально-логическая, представлявшая знание в правиле, математической формуле, рецепте и т.д., что фиксировалось в справочниках и учебниках. Развивалась прогностическая функция науки.

В XVII в. разделение труда в производстве вызывает потребность в рационализации производственных процессов. В XVIII - XIX вв. значительно сильнее подчеркивалась связь науки с практикой, ее общественная полезность. Д-И. Менделеев, например, подчеркивал взаимную заинтересованность друг в друге промышленности и науки.

Наука возникла из практики и развивается на ее основе под влиянием общественных потребностей (астрономия, математика, механика, термодинамика, биология химия и т.д.). Практика не только ставит задачи и стимулирует науку, но и сама развивается под ее воздействием. Например, электродинамика возникла преимущественно в научных лабораториях и дала импульс для электротехники, создания новых средств связи. Атомная, лазерная, компьютерная, биоинженерная технологии возникли не из повседневного опыта, а в головах ученых. В XX в. теоретическое и экспериментальное естествознание, а также математика достигли такого уровня, что начали оказывать решающее воздействие на развитие техники и всей системы производства. Наука, превратившись в отрасль массового производства - индустрию знаний, стала, как предвидел К. Маркс, производительной силой общества. Наука внедряется в производство через многочисленные посредствующие звенья (новую технику, новые технологические процессы и т.п.), создание которых требует определенного времени. В этом смысле наука - опосредованная производительная сила. Взаимосвязь практики и науки не следует понимать примитивно в том смысле, что каждое положение науки должно подтверждаться практикой и применяться на практике. «В процессе обоснования положений науки мы пользуемся многими приемами опосредованного сопоставления научных утверждений, научных контекстов с действительностью (логическим доказательством, принципами соответствия, принципами простоты и непротиворечивости, отысканием моделей, удовлетворяющих формальным системам, правилам сведения сложного к простому и т.п.), которые лишь в конечном счете связаны с практикой».

По своей сущности наука, отмечал Н.А. Бердяев, есть реакция самосохранения человека. Обращенность науки к человеку особенно стала заметной с середины XX в. Это вызвано тем, что автоматизация освобождает работника из технологического подчинения машине. Поэтому прежняя ориентация на технику теряет самодовлеющее значение. М. Вебер, подчеркивая позитивную роль науки в обществе, считал, что наука разрабатывает, во-первых, технику овладения жизнью» - как внешними вещами, так и поступками людей, во-вторых, методы мышления, ее «рабочие инструменты» и вырабатывает навыки обращения с ними, т.е. наука служит школой мышления. Усилилась роль науки как социальной и политической силы общества. Наука используется для разработки планов и программ социального и экономического развития, для грамотного политического управления. Наука опосредованно, через социальные общности и политические организации общества, систему общемировоззренческих и культурных установок, определяет социальное, политическое, экологическое и демографическое поведение, цели общественного развития. Наука изменяет отношения «человек - природа», «человек - машина» и «человек - человек», т.е. воздействует на всю общественную практику.

История возникновение и развитие науки

1. История возникновение и развитие науки

1.1 Возникновение и развитие науки, ее функции

1.2 Научное познание и его специфические признаки

1.3 Строение и динамика научного знания

1.4 Методология научного познания

1.5 Методы эмпирического и теоретического исследования

1.6 Этика науки

Список использованных источников

наука эмпирический теоретический ученый

1. История возникновение и развитие науки

1.1 Возникновение и развитие науки, ее функции

В древности человек, добывая себе средства к жизни, сталкивался с силами природы и получал о них первые, поверхностные знания. Миф, магия, оккультная практика, передача опыта внетеоретическим способом от человека к человеку - таковы некоторые формы донаучного знания, обеспечивавшие условия человеческого существования. Л.И. Шестов утверждал, что существуют и всегда существовали ненаучные приемы отыскания истины, которые приводили если не к самому познанию, то к его преддверию. Ненаучное понимается как разрозненное, несистематическое, неформализованное знание. Донаучное знание выступает прототипом, предпосылочной базой научного. Следует также иметь в виду, что есть сферы человеческой деятельности и отношений, которые весьма затруднительно выразить строгими нормами научной доказательности, например области нравственности, культурно-этических традиций, веры, аффектов и т.д. М. Вебер, Р. Триг, П. Фейерабенд и др., рассуждая о границах научного познания, приводили следующие аргументы.

1. Человеческая жизнедеятельность шире и богаче рационализированных ее форм, поэтому необходимы помимо научно-рациональных иные методы изучения и описания бытия и его частей.

2. Научное познание есть не только сугубо рациональный акт, но и включает в себя интуицию, творчество без осознанных логических операций.

3. Наука, развиваясь на основе собственной логики, в то же время опосредована всем социокультурным фоном и не является лишь плодом разума.

В целом, отвергается не значение науки в функционировании системы «человек - общество - природа», а ее порой чрезмерные претензии на решение различных проблем.

Удивление явилось началом философии, ибо это есть начало мысли, а возникшее по поводу многих явлений мира и тайн человека недоумение есть начало науки (точнее, пред- науки). Элементарная наука возникла тогда, когда произошло отделение умственного труда от физического и сформировалась особая группа людей - ученых, для которых научная деятельность стала профессией.

Предпосылки науки создавались в Египте, Вавилоне, Индии, Китае, Греции, Древнем Риме в форме эмпирических знаний о природе и обществе, в виде зачатков астрономии, этики, логики, математики и др. Эти зачатки сведений и знаний объединялись в рамках философии. В античности и средние века понятия «философия», «знания» и «наука» совпадали.

Центрами обучения и формирования творческих качеств ученого стали научные школы - неформальные объединения коллег. Платон создал школу-академию. В средние века появились публичные диспуты, шедшие по жесткому ритуалу. Им на смену пришел непринужденный диалог между людьми в эпоху Возрождения. В последующем формы диспута и диалога переросли в процедуры защиты диссертаций. Общение ученых с целью обмена идей ведет к приращению знаний. Бернард Шоу рассуждал: если два человека обмениваются яблоками, то у каждого остается по яблоку. Но если они передают друг другу по одной идее, то каждый из них становится богаче, обладателем двух идей. Полемика, оппонирование (открытое или скрытое) становятся катализатором работы мысли.

Наука ориентируется на поиск сущности, того, что не дано непосредственно чувствам. Необходимым стало умение реальные объекты трансформировать в идеальные, существующие в мысли, в логике рассуждений, в расчетах. Начиная с античности, функцией научной деятельности стала объяснительная (обоснование и разъяснение различных зависимостей и связей, существенных характеристик явлений, их происхождения и развития).

Идея рациональности постепенно дополнялась идеей возможности перевести идеальный объект в материальный. Предвестником опытной науки стал Р. Бэкон (XIII в.). Он критиковал схоластический метод, предлагал опираться на опыт, большое значение придавал математике, обращался к проблемам естествознания. Родился эксперимент, соединивший идеальность (теорию) и технологичность («делание руками»). Б. Рассел писал о двух интеллектуальных инструментах, конституировавших современную науку, - изобретенный греками дедуктивный метод и впервые систематически использованный Галилеем экспериментальный метод.

Наука в собственном смысле слова возникла в XVI - XVII вв., когда «наряду с эмпирическими правилами и зависимостями (которые знала и преднаука) формируется особый тип знания - теория, позволяющая получить эмпирические зависимости как следствия из теоретических постулатов». Наука, в отличие от обыденного знания, доводит изучение объектов до уровня теоретического анализа. Э. Агацци считает, что науку следует рассматривать как «теорию об определенной области объектов, а не простой набор суждений об этих объектах».

Факторами возникновения науки стали: утверждение в Западной Европе капитализма и острая потребность в росте его производительных сил, что невозможно было без привлечения знаний; подрыв господства религии и схоластически-умозрительного стиля мышления; наращивание количества фактов, которые бы подлежали описанию, систематизации и теоретическому обобщению. Самостоятельными отраслями знания стали астрономия, механика, физика, химия и другие частные науки. Наиболее выдающимися естествоиспытателями, математиками и одновременно философами в XVI - XVII вв. были Д. Бруно, Н. Коперник, Г. Галилей, И. Ньютон, Ф. Бэкон, Р. Декарт, Д. Локк, Г. Лейбниц и др.

Научная рациональность выражается прежде всего как соразмерность мира критериям разума, логики. Начиная с XVII в. рациональность становится одним из фундаментальных идеалов европейской культуры. Как социальный институт наука оформилась в XVII - XVIII вв., когда возникли первые научные общества, академии и научные журналы.

Античное и средневековое представление о космосе как конечном и иерархически упорядоченном мире в Новое время уступает место представлению о бесконечности Вселенной, о природе как совокупности естественных, причинно обусловленных, не зависящих от человека процессов. Ориентация на изучение объективного мира вещей и вещных отношений в качестве функции науки выдвигала задачу познания с целью переделки и преобразования природы. Ф. Бэкон провозглашал, что цель науки - господство над природой ради повышения благосостояния общества и совершенствования производства. Он выступал за союз философии и естествознания. Ф. Бэкон - автор афоризма «Знание - сила», в котором отразилась практическая направленность новой науки. Адекватной этой задаче формой организации знания явилась рационально-логическая, представлявшая знание в правиле, математической формуле, рецепте и т.д., что фиксировалось в справочниках и учебниках. Развивалась прогностическая функция науки.

В XVII в. разделение труда в производстве вызывает потребность в рационализации производственных процессов. В XVIII - XIX вв. значительно сильнее подчеркивалась связь науки с практикой, ее общественная полезность. Д-И. Менделеев, например, подчеркивал взаимную заинтересованность друг в друге промышленности и науки.

Наука возникла из практики и развивается на ее основе под влиянием общественных потребностей (астрономия, математика, механика, термодинамика, биология химия и т.д.). Практика не только ставит задачи и стимулирует науку, но и сама развивается под ее воздействием. Например, электродинамика возникла преимущественно в научных лабораториях и дала импульс для электротехники, создания новых средств связи. Атомная, лазерная, компьютерная, биоинженерная технологии возникли не из повседневного опыта, а в головах ученых. В XX в. теоретическое и экспериментальное естествознание, а также математика достигли такого уровня, что начали оказывать решающее воздействие на развитие техники и всей системы производства. Наука, превратившись в отрасль массового производства - индустрию знаний, стала, как предвидел К. Маркс, производительной силой общества. Наука внедряется в производство через многочисленные посредствующие звенья (новую технику, новые технологические процессы и т.п.), создание которых требует определенного времени. В этом смысле наука - опосредованная производительная сила. Взаимосвязь практики и науки не следует понимать примитивно в том смысле, что каждое положение науки должно подтверждаться практикой и применяться на практике. «В процессе обоснования положений науки мы пользуемся многими приемами опосредованного сопоставления научных утверждений, научных контекстов с действительностью (логическим доказательством, принципами соответствия, принципами простоты и непротиворечивости, отысканием моделей, удовлетворяющих формальным системам, правилам сведения сложного к простому и т.п.), которые лишь в конечном счете связаны с практикой».

По своей сущности наука, отмечал Н.А. Бердяев, есть реакция самосохранения человека. Обращенность науки к человеку особенно стала заметной с середины XX в. Это вызвано тем, что автоматизация освобождает работника из технологического подчинения машине. Поэтому прежняя ориентация на технику теряет самодовлеющее значение. М. Вебер, подчеркивая позитивную роль науки в обществе, считал, что наука разрабатывает, во-первых, технику овладения жизнью» - как внешними вещами, так и поступками людей, во-вторых, методы мышления, ее «рабочие инструменты» и вырабатывает навыки обращения с ними, т.е. наука служит школой мышления. Усилилась роль науки как социальной и политической силы общества. Наука используется для разработки планов и программ социального и экономического развития, для грамотного политического управления. Наука опосредованно, через социальные общности и политические организации общества, систему общемировоззренческих и культурных установок, определяет социальное, политическое, экологическое и демографическое поведение, цели общественного развития. Наука изменяет отношения «человек - природа», «человек - машина» и «человек - человек», т.е. воздействует на всю общественную практику.

1.2 Научное познание и его специфические признаки

Исторически наука исходит от знания, представленного в определенных формах:

1) специализированное знание, характерное для искусств, ремесел, торговли, мелкого производства;

2) протонаука - подготовительный этап становления науки (сбор сведений, отдельные каузальные констатации при наблюдении за явлениями природы и т.п.);

3) паранаука - такие виды знания, как алхимия, астрология, теология, парапсихология, эзотеризм. Охарактеризуем некоторые виды паранауки.

Эзотеризм - совокупность знаний и духовных практик, закрытых от непосвященных, передаваемых в личном опыте от ищущего к ищущему. Эзотерические знания внерациональны, даются в мистическом опыте и не могут быть выражены в ограниченных понятиях. Эзотеризм подвергает критике ценности обыденной жизни и культуры, напротив, отстаивает веру в существование иной, эзотерической реальности, убежден, что человек при жизни способен включиться в эту реальность при условии духовной переделки себя в иное существо.

Астрология возникла в древнем Вавилоне в III тысячелетии до н. э. Основными направлениями современных астрологов являются попытки выявить и описать различные психологические грани характера личности, а также предсказывать будущее. К астрологическим характеристикам следует относиться скептически и вместе с тем видеть в них некие «рациональные зерна». Как религия и философия, астрология нацеливает на то, чтобы заглянуть в себя, попытаться найти внутреннюю точку опоры, осознать связь человека с космосом.

Вненаучные виды знания нельзя вычеркнуть из общей духовной культуры людей. И все же паранаука лишает людей критически взвешенного взгляда на мир, одурманивает часть населения. Сейчас рождаются и возрождаются так называемые альтернативные науки (например, трансперсональная психология, восточные системы миропонимания и т.д.). В безграничном мире необходимы все формы его освоения человеком. Магия, астрология, паранормальные явления трактуются неоднозначно:

а) как реализация объективных возможностей, заложенных в природе и человеке, но пока еще неизвестных науке;

б) как тупиковый путь познания бытия, воздействия на него.

Важнейший специфический признак науки заключается в том, что наука дает предметное объективное знание о мире (исследует природные, социальные, технические и т.п. объекты). Конечно, наука изучает и субъекта, состояние его сознания, но рассматривает их как объекты. Научное знание в подлинном смысле слова начинается тогда, когда не что-то вымышленное, а реальность, факты выступают предметом исследования, причем за совокупностью фактов осознается закономерность - необходимая связь между фактами, что позволяет объяснить, почему данное явление протекает так, а не иначе, предсказать дальнейшее его развитие. Наука - совокупность знаний о фактах и законах, приведенных в систему. Нечто существующее становится научным фактом тогда, когда оно зафиксировано тем или иным принятым в данной науке способом (фотография, запись в виде высказываний, формул, магнитофонная и т.д.). Факт возникает как результат рациональной обработки данных наблюдений, их осмысления и понимания.

В фактах науки выражено взаимодействие чувственного и рационального, объективного и субъективного. Объективная составляющая факта - это реальные процессы, события, которые служат исходной основой для фиксации познавательного результата. Субъективный момент - зависимость способов фиксации фактов от системы исходных абстракций теории, теоретических схем, психологических установок человека и т.п. Эмпирический факт оказывается теоретически нагруженным, зависимым от наших предшествующих теоретических знаний. Теоретические принципы нацеливают субъекта на выделение тех или иных фрагментов действительности, они же составляют интерпретацию факта. Д. Бернал в своей книге «Наука в истории общества» определял науку как что-то наиболее объективное из известного человеку и вместе с тем субъективное и психологически обусловленное, как и любая другая область человеческих устремлений.

Наука объективные законы явлений выражает в абстрактных понятиях и схемах, которые в конечном счете должны соответствовать действительности. В этом отличие науки от классического искусства, которое выражает познанное в конкретных художественных образах, допускающих возможность вымысла, фантазии. Впрочем, и наука выигрывает, когда ее крылья раскованы фантазией (Фарадей). Наука, как и все виды искусства, требует воображения. Воображение, считает А. Эйнштейн, важнее знания, ибо знание ограничено, воображение же охватывает все на свете.

Кроме отмеченных, к другим признакам научного познания, в отличие от обыденного, относятся: строгая доказательность полученных результатов, достоверность выводов; логическое обоснование и практическая проверка знаний; выработка специального искусственного языка (научной терминологии); осуществление междисциплинарных контактов через метаязык; применение специальных орудий, аппаратуры, приборов; использование специфических методов и методологии исследования, призванной направлять научный поиск; допущение критического пересмотра оснований научного поиска; наличие системы ценностных ориентаций и целевых установок, основной из которых является поиск объективной истины как высшей ценности науки; наращивание знаний, не повторяя пройденного, что не исключает преемственности с приращением, так как каждый новый виток в развитии знаний опирается на предшествующий уровень; концептуальный и системный характер знаний; при известных условиях воспроизводимость, опытная проверяемость научных явлений.

1.3 Строение и динамика научного знания

Наука включает в себя все условия производства новых знаний о природе, обществе и мышлении:

а) ученых с их знаниями и способностями, квалификацией и опытом, с разделением и кооперацией научного труда;

б) научные учреждения, экспериментальное и научное оборудование;

в) систему научной информации.

С середины XX в. государство становится активным участником науки: ставит перед научными сотрудниками четкие цели, определяет сроки выполнения и необходимые ресурсы, осуществляет финансовую и социальную поддержку науки.

Наука охватывает исторически подвижное соотношение: природоведения и обществоведения, естествознания и философии, теории и метода, теоретических и прикладных исследований. Различают гуманитарные, философские, логико-математические, естественные и технические науки. В структуре науки выделяются три слоя:

1) всеобщего знания - философия и математика;

2) частно-научного знания, изучающего объекты в рамках одной из форм материи и движения либо на стыке структурных уровней материального мира;

3) междисциплинарного интегративного характера - общая теория систем и теоретическая кибернетика, синергетика. С точки зрения характеристики знаний различают:

а) эмпирические знания;

б) теоретические знания;

в) мировоззренческие, философские основы и выводы.

Основаниями каждой науки выступают:

а) идеалы и нормы исследования;

б) научная картина мира;

в) философские принципы.

Идеалы и нормы исследования выполняют роль регулятивных принципов, выражают ценностные и целевые установки науки и включают:

а) доказательность и обоснованность знания;

б) объяснения и описания;

в) построения и организации знания.

Имеются различные модели норм и идеалов науки. Ж. А. Пуанкаре (1854 - 1912) провозгласил в качестве основания науки соглашение между учеными (конценцио- нализм). Для Пуанкаре «что объективно, то должно быть обще многим умам и, значит, должно иметь способность передаваться от одного к другому». Э. Мах в работе «Познание и заблуждение» стремился показать, что идеалом науки является чистое описание фактов чувственного восприятия. Отталкиваясь от идеи унификации языка, построения единого языка при помощи символической логики, представители Венского кружка (М. Шлик, О. Нейрат, К. Гедель, Г. Рейхенбах, р. Карнап и др.) основанием научного познания считали установление исходных элементарных утверждений. В концепции М. Полани (1891 - 1976) основанием науки названо неявное, личностное знание. Интересы, пристрастия, цели людей (ученых) нельзя отделить от производимого ими знания. С точки зрения С. Тулмина (1922 - 1997), масштабные изменения в науке происходят благодаря накоплениям изменений, каждое из которых сохранилось в процессе отбора в какой-либо локальной проблемной ситуации. «Научная элита» является носительницей «интеллектуальных инициатив», выведения новых продуктивных понятий. И. Лакатос (1922 - 1974) доказывал, что функционирование науки в первую очередь зависит от научно-исследовательской программы, которая предстает как совокупность и последовательность теорий, связанных общностью развивающихся основополагающих идей и принципов. В структуре программы были выделены: а) «жесткое ядро» - система специфических фундаментальных допущений; б) защитный пояс - совокупность вспомогательных гипотез, предохраняющих «ядро» от опровержений; в) позитивная и негативная эвристика - нормативные, методологические правила - регуляторы, предписывающие, какие пути наиболее перспективны для дальнейшего исследования, а каких путей необходимо избегать. Лакатос указывает, что его методология исследовательских программ предполагает их соперничество, допускает существование и снятие возникающих в теориях противоречий, имеет предсказательные функции. Д. Холтон (XX в.) пришел к выводу, что тематизм играет главную роль в стимулировании научных прозрений. «Тематический анализ» позволяет найти в науке черты непрерывности, инвариантные структуры. В темах собраны понятия, гипотезы, методы, предпосылки, программы и способы решения проблем. Истоки некоторых тем уходят в древнее мифологическое мышление и устойчивы к революционным потрясениям. Холтон обсуждает понятие альтернативных тем, которые связываются в пары (например, тема атомизма с темой континуума). Новые теории появляются на стыке конкурирующих позиций, а новые темы возникают тогда, когда невозможно сблизить существующие (например, темы классической и вероятностной причинности). Как основание науки выступает также теория парадигм и синтагм.

Научная картина мира - целостная система представлений об общих свойствах и закономерностях бытия. Различают общенаучную, естественнонаучную, социальнонаучную и специальную (частную, локальную) картины мира. Основными компонентами картины мира являются представления о фундаментальных объектах, о типологии объектов, их взаимосвязи и взаимодействии, о пространстве и времени. Научная картина мира - развивающееся образование, о чем свидетельствует, например, смена воззрений о материи. В процессе развития теоретического знания научная картина мира выполняет ряд функций: эвристическую, систематизирующую, нормативную, интегративную и мировоззренческую, целенаправляет постановку задач научного поиска и выбор средств их решения.

Философские принципы участвуют в построении новых теорий, направляя перестройку нормативных структур науки и картин реальности. На первом этапе (классическом, XVII - XIX вв.) идеалом познания было построение окончательной, абсолютно истинной картины природы. Главное внимание уделялось поиску очевидных, наглядных онтологических принципов. На втором этапе (неклассическом, первая половина XX в.) происходит отказ от прямолинейного онтологизма, развивается понимание относительной истинности картины природы, допускается истинность нескольких отличающихся друг от друга конкретных описаний одной и той же реальности, ибо в каждом из них может содержаться момент объективно-истинного знания. Принимаются объяснения и описания, которые характеризуют не только объекты сами по себе, но и содержат ссылки на средства и операции познавательной деятельности. На третьем этапе (постнеклассическом, вторая половина XX - начало XXI в.) осуществляется осмысление исторической изменчивости не только онтологии, но и самих идеалов и норм научного познания, наука предстает в контексте социальных условий и социальных последствий, подчеркивается значимость включения аксиологических (ценностных) факторов при объяснении и описании ряда сложных системных объектов (например, при описании экологических процессов, обсуждении проблем генной инженерии и т.п.)- Картины реальности становятся взаимозависимыми и предстают в качестве фрагментов целостной общенаучной картины мира. Современная общенаучная (философская) картина мира мозаична, многослойна, предполагает продолжение.

Развитие современной научной картины мира выступает одним из аспектов поиска новых мировоззренческих смыслов и ответов на исторический вызов, стоящий перед современной цивилизацией. Общекультурный смысл картины мира определяется ее включенностью в решение проблемы выбора жизненных стратегий человечества, поиска новых путей развития. Современное научное мышление во всевозрастающей степени концентрируется на задачах прогноза, безопасности, противодействия деструктивным тенденциям, сохранения и укрепления жизнестойкости самоорганизующейся системы в единстве ее биологических и социальных составляющих.

Во взаимодействии с наукой философия в различных конкретных проявлениях:

а) стоит над наукой как ее ориентир;

б) входит в науку как ее компонент;

в) находится в фундаменте науки как ее системообразующее начало.

Философия выполняет функции обобщения, синтеза всевозможных знаний, открывает наиболее общие закономерности, связи во взаимодействии основных подсистем бытия, осуществляет задачи прогноза, формирования гипотез об общих принципах, тенденциях развития, формирует первичные гипотезы о природе конкретных явлений, еще не проработанных специально-научными методами. Философия на основе общих принципов понимания классифицирует житейские, практические наблюдения различных явлений, вырабатывает философские подходы к тем или иным природным и общественным реалиям, подготавливая их последующую конкретно-научную проработку (пример: сформулированные Ф. Энгельсом и В-И. Лениным идеи о неисчерпаемости атома и электрона, получившие обоснование в физике).

Наука и философия взаимосвязаны, но вместе с тем и Различны. Ницше, Ортега-и-Гасет, Хайдеггер, Бердяев настаивали на своеобразии философии по отношению к науке, ведь философия, подчеркивали они, в принципе не согласуется с объективностью науки, ее следованиям строгим методам и методикам. Главный признак, отличающий философское познание от научного, считает Н.А. Бердяев, нужно видеть в том, что философия познает бытие из человека и через человека, наука же познает бытие как бы вне человека. Бердяев придерживается мнения, что философия есть скорее искусство, а не наука; искусство познания в свободе через творчество идей, противящихся мировой данности и необходимости и проникающих в сущность мира. Близость философии к искусству подчеркквали Шеллинг, Шопенгауэр, Кьеркегор, многие экзистенциалисты, постмодернисты (Фуко, Даррида, Лиотар). Напротив, Гегель, Виндельбанд, Гуссерль, Куайн считали философию наукой. Ведь многие признаки науки - доказательность, систематичность, логичность аргументации, принципиальная проверяемость высказываний, первоначально были выработаны в философии. B.C. Соловьев существенные признаки науки свел к двум условиям: 1) наибольшей проверенности или доказательности со стороны содержания; 2) наибольшей систематичности со стороны формы. Оба эти условия ставят науку в связь с философией, в которой проверяются понятия и принципы, предполагаемые различными науками, и сводятся к всеобъемлющему единству все частные обобщения наук.

Философия обладает определенной избыточностью содержания по отношению к запросам науки каждой эпохи. Так, идеи атомистики, первоначально выдвинутые в античной философии, лишь в XVII - XVIII вв. превратились в естественнонаучный факт; в разработанном Гегелем категориальном аппарате были отражены многие наиболее общие сущностные характеристики сложных саморазвивающихся систем; протагоровское суждение о человеке как мере всех вещей, кантовское положение о человеке как высшей цели, борьба линий тотальности и индивидуальности в человеке в русской философии XIX в. предвосхитили ныне острые теоретические и практические задачи совершенствования личности.

Наиболее важные синтетические теории естествознания отличаются ярко выраженным философским характером. Так, понимание закона сохранения и превращения энергии невозможно без уяснения философских вопросов о вечности и бесконечности материи и движения, об их не- уничтожимости. В частности, обоснование Майером и джоулем неуничтожимости энергии и эквивалентности ее взаимопревращений было подготовлено выдвинутым Декартом положением о постоянстве количества движения в природе, идеей Шеллинга о взаимопревращении энергии из одной формы в другую. Теория относительности устанавливает связь пространства, времени и движущейся материи, квантовая теория раскрывает взаимоотношение прерывности и непрерывности в микромире, а это не только физические, но и философские проблемы.

Вместе с тем «философские предубеждения» способны порой тормозить развитие науки. Так, идеологическая за- данность, облеченная в догматическую философскую форму, на определенном этапе навредила в СССР кибернетике и генетике, социологии.

Единство рассмотренных оснований науки воплощено в стиле мышления. Выделяются диалого-художественный (Платон), логико-научный (Аристотель), художественно-поэтический (Лукреций Кар), спекулятивно-религиозный (Фома Аквинский), концептуально-научный (Кант, Гегель, Маркс, Карнап, Фейерабенд), образно-художественно-теоретический (Шопенгауэр, Ницше, экзистенциалисты, постмодернисты) стили философствования. Стиль научного мышления, тесно связанный с философским стилем, выступает как механизм, который обеспечивает связь между целями и потребностями науки и возможностями социокультурного целого, запросами исторического времени. Стиль мышления выражает стереотипы интеллектуальной деятельности, присущие данному этапу, и воплощается в определенной конкретно-исторической форме, выполняет в научном познании регулятивную функцию, носит многослойный, вариативный и ценностный характер. Различают классический, неклассический и постнеклассический (современный) стили научного мышления. В классической науке господствует объектный стиль мышления, характеризующийся стремлением познать предмет сам по себе, безотносительно к условиям его изучения субъектом. Неклассическая наука осмысливает связи между знаниями объекта и характером средств и операций деятельности субъекта. В постнеклассической науке проявляется синергетический стиль мышления. В современном стиле мышления усиливаются Моральная и экологическая составляющие, приобретает теоретический статус принцип коэволюции мира человека и мира природы. Человеческое измерение в ряде современных наук отражено в разработке и освоении антропного космологического принципа, идей неравновесности, глобального эволюционизма. Изучение сложных систем и процессов привело к переосмыслению ряда философских понятий: случайность, вероятность, возможность, историзм и др. В стиле научного мышления наличествуют не только когнитивно-методологическая, но и социокультурная, эстетическая, аксиологическая и психологическая стороны.

Развитие знаний происходит постепенно, а также в форме научных революций. Каждая из них содержит разрушительную сторону - освобождение от устаревших представлений и созидательную - формирование новых взглядов, удержание в обновленном знании полезного из прежнего багажа. При этом обогащается понятийный аппарат, создаются более емкие теории, меняются методы познания, стиль мышления.

Первая крупная революция в науке, преимущественно в естествознании (XV - XVII вв.), разрушила геоцентрическую систему Птолемея и утвердила идеи Коперника, Галилея, Ньютона, т.е. создала классическую (механистическую) картину миропонимания. Схоластику заменил стиль мышления, основанный на использовании эмпирического метода. Утвердилась система мышления, представившая мир как твердую материю, подчиненную жестким законам. Человек в этом мире - побочный продукт звездной эволюции.

Вторая глобальная научная революция связана с такими достижениями в естествознании, как эволюционное учение Дарвина, появление клеточной теории, открытие закона сохранения и превращения энергии, менделеевской системы химических элементов, открытие неэвклидовых геометрий, создание теории электромагнитного поля и т.д. (XIX в.). Было показано, что критерии очевидности и наглядности, которые во многом были основанием онтологизации тех или иных теоретических конструктов, явно недостаточны. По разрушительному характеру это была антиметафизическая, а по созидательному - диалектическая революция.

Третья революция в науке произошла на рубеже XIX - XX вв., охватила значительную часть XX в. Было воздвигнуто неклассическое естествознание. Теория относительности Эйнштейна, опыты Резерфорда с альфа-частицами, работы Н. Бора, другие исследования в ряде наук показали, что мир сложен и что сознание человека включено в восприятие действительности. Пространство многомерно, время нелинейно, они тесно переплетены и образуют пространственно-временной континуум. Мир - сплошная динамика, не позволяющая говорить о фиксированном месте в пространстве и о массе покоя. Элементарные частицы являют собой сгустки поля. Внутриатомные события неопределенны, возникают спонтанно и могут быть описаны на языке математических вероятностей.

Научная картина мира менялась под влиянием диалектической логики и неевклидовой геометрии (XIX в.), теории относительности и квантовой механики (начало XX в.), общей теории систем и теоретической кибернетики, теории хаоса (с середины XX в.). В построении современной научной картины мира важную роль сыграли теория нестационарной Вселенной, квантовая химия, генетика, синергетика, теория биологической эволюции и развитие на ее основе концепции биосферы и ноосферы.

В современную эпоху осуществляются новые радикальные изменения в основаниях науки в рамках новейшей глобальной научной революции, в ходе которой рождается постнеклассическая наука. Индустриальное общество было основано на капитале и труде, машинной технологии, а постиндустриальное базируется на интеллектуальной технологии, информации и знаниях. Если на классическом этапе науки осваивались преимущественно малые системы, на неклассическом - сложные саморегулирующиеся системы, то постнеклассическая рациональность проявляется при переходе к исследованию сложных исторически саморазвивающихся систем. Такие системы характеризуются открытостью, нелинейностью, возникновением в процессе эволюции все новых уровней организации, кооперативными эффектами, принципиальной необратимостью процессов, изменениями по схеме: порядок - динамический хаос - порядок. Человеческое действие не является внешним, а как бы включается в систему. Перед человеком постоянно возникает проблема выбора (чаще всего не однозначно прочитанного) некоторой линии развития из множества возможных путей изменения системы. В работах И.Р. Пригожина (1917 - 2003, бельгийского ученого и философа российского происхождения), Джеффри Чу и других вырабатывается новое понимание эволюции. За Вселенной признается первичная динамическая неопределенность, все события непрерывно перетекают в другие. Теории естествознания - лишь создания человеческого разума, их не надо путать с самой реальностью, которая в следующий момент может повернуться совсем другой стороной. Мир предстает как многозначная ветвящаяся древовидная крона ходов движения Космоса, биосферы и истории. Постнеклассическая наука исходит из того, что постоянно изменяются как реальность (наряду с ее относительной устойчивостью), так и «субъект» познания, ибо совершенствуются познавательные способности человека. Сложная структура реальности обусловливает смену доминирующих наук. На каждом историческом этапе та или иная господствующая область знаний определяется социальным запросом и материально-техническим уровнем развития цивилизации. В XXI в. все более динамичными и значимыми становятся исследования в областях биологии и человековедения.

Переход от классической к неклассической и постнеклассической науке характерен также и для обществознания (конкретнее см. в разделе о социуме).

В целом философия обобщает материал исторического развития культуры, участвует в свершении научных революций, готовит категориальный аппарат, новые способы понимания, осмысления и переживания человеком мира. Философия - и эвристика научного поиска, и средство адаптации научных знаний к господствующим в культуре мировоззренческим установкам. Философия обеспечивает поиск новых подходов к изменению картины мира и изменению идеалов и норм науки. Различные отрасли науки, в свою очередь, оказывают влияние на философское мышление каждого поколения.

1.4 Методология научного познания

Следование методу обеспечивает регуляцию и контроль в деятельности, задает ее логику. В своем сочинении «Об уме» К. Гельвеций определил метод как средство, употребляемое для достижения поставленной цели. Вырастая из теории, метод служит средством ее дальнейшего развития. К. Маркс говорил, что не только результат исследования, но и путь, ведущий к нему, должен быть истинным. В современном представлении под методологией подразумевается система исходных, основополагающих принципов, определяющих способ подхода к явлениям, характер и направленность познавательной, оценочной и практической деятельности. С отделением частных наук от философии помимо философских методологических изысканий развились внутринаучные. В частных науках изучаются не только те или иные объекты и их свойства, но и приемы и средства постижения этих объектов.

В своей теории двойственной истины Ф. Бэкон провел разграничение предмета, функций и способов познания в теологии и философии. Предметом теологии является Бог, функцией - обоснование и защита религиозного вероучения. Теология опирается на сверхъестественное откровение - авторитет Священного Писания. Предмет философии - природа, цель - изучение законов природы, разработка метода познания природы. Всякое познание и изобретение, полагал Бэкон, должны опираться на опыт, двигаться от изучения единичных фактов к общим положениям. Философ сравнивал метод со светильником, освещающим путнику дорогу в темноте, полагал, что нельзя рассчитывать на успех в изучении какого-либо вопроса, идя ложным путем. Истинное знание достигается посредством выяснения причинных связей. Первая ступень познания - опыт, вторая - разум. Ученый не должен уподобляться ни пауку (постулирование общих аксиом), ни муравью (эмпиризм), а быть подобием пчелы.

Лучше совсем не помышлять об отыскании истин, . считал Р. Декарт, чем делать это без всякого метода, ибо беспорядочные занятия омрачают ум. Создание нового метода мышления требует прочного основания. Такое основание содержится в разуме, в его первоисточнике - самосознании. Итак, если Бэкон знание выводил из опыта, эксперимента непосредственно, то Декарт объяснял знание особенностями человеческого интеллекта. (Вероятно, при получении знания необходимо комбинировать то, что связано с экспериментом, и то, что связано с интеллектом.) Метод, как его понимает Декарт, должен превратить познание в организованную деятельность. Ориентируясь на конструктивные возможности математического знания, Декарт сформулировал правила метода: допускать в качестве истинных только такие положения, которые представляются уму ясно и отчетливо, не могут вызывать сомнений в их истинности; расчленять «каждое из исследуемых... затруднений на столько частей, сколько это возможно и нужно для лучшего их преодоления»; «придерживаться определенного порядка мышления, начиная с предметов наиболее простых и наиболее легко познаваемых и восходя постепенно к познанию наиболее сложного»; «составлять всегда перечни столь полные и обзоры столь общие, чтобы была уверенность в отсутствии упущений» т.е. не делать никаких пропусков в логических звеньях исследования. Сходные положения метода рационального познания сформулированы Лейбницем: рассмотрение всех «реквизитов» вещей; разделение трудностей на части; последовательность мыслительных операций; исследование вещей от легких к более трудным; составление « каталогов » мыслей ». Лейбниц исходил из того, что законы мира сводятся к законам логики и выводятся из глубин сознания.

Философ считал, что имеются:

1) всеобщие различия (не бывает совершенного сходства, что указывает на качественное многообразие мира);

2) относительная тождественность неразличимых вещей (две вещи, у которых все свойства первой присущи второй, а все свойства второй - первой, тождественны);

3) всеобщая непрерывность (между двумя соседними по качеству вещами существует бесконечное число переходов, так, прямая линия - предел кривой, геометрическая точка - минимальный отрезок, покой - крайне медленное движение и т.п.);

4) монадная дискретность (подчеркивается индивидуализация объектов действительности и, соответственно, знаний о них, неповторимость и неисчерпаемость явлений).

Все названные принципы соотносятся между собой как попарно, так и взаимно дополняя друг друга. Лейбниц указал также на всеобщность связей, переход возможного в действительное. Такой методологический подход к картине мира опирался на его математическую теорию дифференциальных и интегральных исчислений.

Представители эмпириокритицизма (Э. Лаас, Р. Авенариус, Э. Мах) выдвинули некоторые новые методологические идеи: относительности теоретического знания, его зависимости от способов познавательной деятельности, отсутствия «пропасти» между физическим и психическим в опыте и т.п. Мах подверг убедительной критике принципы ньютоновской механики, что повлияло на формирование неклассической физики.

В.И. Ленин, рассуждая о познании предмета, отметил необходимость охвата всех его сторон и связей. Подчеркнуто, что, стремясь к всестороннему изучению вещей, мы никогда не достигнем этого полностью. Ленин (вслед за Гегелем) указывал также на необходимость брать предмет в его развитии, «самодвижении», изменении. При этом вся человеческая практика должна войти в полное «определение» предмета. Подчеркнута конкретность истины.

Весомый вклад в развитие метода исследования внесли представители сциентистских и антропологических направлений в философии. Они, разрабатывая принципы верификации, опровержения и подтверждаемости, гипотетико-дедуктивные, рациональные и интуитивные модели строения научного знания, показали роль языка в построении картины мира. На этой основе разрабатываются аналитический, интуитивный, феноменологический, герменевтический и другие философские методы. Делаются попытки соединить разные методы. Например, Гадамер пытается совместить герменевтику с рационалистической диалектикой. Методологический инструментарий современной науки обогащается своеобразным синтезом концепции жесткой детерминации и вероятностного подхода. Вероятность - видение мира, важнейшими составляющими которого являются категории случайности, независимости, иерархия уровней, внутренняя активность систем.

В XX - XXI вв. методология выходит за границы познания, рассматривает схемы деятельности, интегрированные в повседневный опыт индивидов, осмысливает культурную проблематику. В познании учитываются все сложности развития науки:

а) внутреннее саморазвитие, взаимодействие тех или иных концептуальных систем с Другими теоретическими системами;

б) обусловленность развития науки внешними экономическими, социально- политическими, культурными факторами. Движущей силой развития науки помимо названного противоречия между внутренними ее закономерностями и внешними факторами являются также противоречия: между теорией и практикой, традициями и новаторством, истиной и заблуждением, между специализацией и необходимостью целостного взгляда на мир и т.п.

«Трем типам научной рациональности соответствуют три типа методологии науки:

1) от Бэкона и Декарта до Маха (классика);

2) от Маха до постпозитивизма (неклассика);

3) постпозитивизм и все те современные методологические исследования (включая отечественные разработки), в которых учитывается проблематика социокультурной детерминации научного познания... Если классическая и в определенной степени неклассическая наука в основном соотносились с ценностями западной культуры..., то многие идеи постнеклассической науки начинают избирательно резонировать с представлениями восточной культурной традиции».

В соответствии со структурой науки выделяются уровни:

а) философской методологии, рассматривающей общие принципы познания и категориальный строй науки;

б) общенаучных принципов и форм исследования (теоретическая кибернетика, системный подход, синергетика), применяемых в различных отраслях науки;

в) конкретно- научной методологии, т.е. совокупность методов, принципов и процедур исследования, используемых в конкретных научных дисциплинах;

г) методики и техники исследования, т.е. набор процедур, обеспечивающих получение достоверных эмпирических данных и их первичную обработку.

Концепцию единства диалектики, логики (науки о мышлении, о законах, формах и приемах рассуждений) и теории познания на идеалистической основе разработал Гегель. С позиций диалектического материализма теоретическую основу всех форм научного познания составляет материалистическая диалектика, выступающая как логика и теория познания и вместе с тем не сводимая к ним.

Современная диалектико-материалистическая методология науки рассматривает во взаимосвязи:

а) объект того или иного научного исследования, т.е. сферу действительности, с которой имеет дело данное исследование;

б) предмет анализа, т.е. ту особую сторону объекта, которая изучается в данном конкретном случае;

в) задачу, поставленную в исследовании; г) этапы деятельности исследователя в процессе решения научной задачи.

Среди методологических тенденций XX в. выделим теорию научных парадигм и синтагм.

философское обоснование теории парадигм (от греч. «пример», «образец») было дано в 60-е гг. XX в. американскими философами науки Т. Куном и С. Тулминым. Парадигма является основанием выбора проблем в той или иной дисциплине в определенную историческую эпоху. В характеристику парадигмы входят: общепринятые в данном сообществе ученых методологические требования и ценностные ориентации (теоретические концепции должны быть простыми, непротиворечивыми, проверяемыми, научные предсказания - точными, по возможности количественно выраженными и т.п.); общепринятые образцы, по которым «изготавливаются» научные описания и объяснения, а также базисные примеры решения конкретных научных проблем.

Парадигма способна успешно решать типичные научные задачи преимущественно в относительно изолированных друг от друга областях (механике, физике, химии, астрономии и т.п.). П. Фейерабенд считает, что требования любого метода справедливы только при точно сформулированных условиях. Единственно правильного научного метода просто не существует. Ученый, полагает Фейерабенд, должен творчески и критически применять плюралистическую методологию.

Наука эволюционирует, пока не обнаруживаются факты, не поддающиеся объяснению с помощью теории и гипотез, сложившихся на основе той или иной парадигмы. С позиций синергетики, полагает Г. Хакен, парадигма представляет собой не что иное, как параметр порядка. Если выявляются новые факты, старая парадигма дестабилизируется, что приводит к возникновению состояния нестабильности и, в конце концов, получает признание новая парадигма. Современный российский философ М.А. Розов раскрывает некоторые стороны механизма возникновения нового знания. Опираясь на традиции, ученый иногда получает ранее не предполагаемые побочные результаты, которые требуют объяснения, что может привести к выходу за рамки прежней традиции. Развитие исследования начинает напоминать движение с пересадкой, с одних традиций, которые двигали нас вперед, мы как бы пересаживаемся на другие. Новый результат достигается также путем комбинирования традиций и идей разных, особенно смежных наук, например, химии и биологии.

В таких достижениях, как коперниковская революция, развитие современного атомизма (кинетическая теория, квантовая и т.д.), приходилось сознательно или непроизвольно разрывать путы «очевидных» методологических правил. Обнаружилось, что для разработки ряда теорий (например, искусственного интеллекта, компьютеров), необходимо в одном комплексе объединить разнородные знания, относящиеся к физике, химии, лингвистике, психологии, нейрофизиологии, социологии, логике, философии и т.д. В развитии науки обозначилась тенденция поливариативности: на одну и ту же проблему может быть не одна точка зрения, у научной задачи не одно решение, а множество. Это обусловливает толерантность к различным мнениям и необходимость взаимопонимания ученых в анализе различных проблем. Так, построение квантовой электродинамики было результатом коллективной работы сообщества физиков (В. Гейзенберг, В. Паули, П. Дирак, Н. Бор, JI. Розенфелд, JI. Ландау и др.) с разделением между ними исследовательского труда. Примером коллективного сотрудничества ученых является также расшифровка генома, где потребовалось создание математических и физических моделей, использование информационных технологий и совместная деятельность профессионалов соответствующего профиля, способных продуцировать новые идеи. Синтагма (от греч. «нечто соединенное») представляет собой особую систему знаний, построенную из неоднородных подсистем, объединяемых для решения определенного комплекса сложных задач, не поддающихся решению на основе какой-либо одной или нескольких научных дисциплин. Образование синтагм происходит не механическим сближением различных дисциплин, а путем выделения из них блоков результатов, достижений, методов, которые «нанизываются» на определенный проблемный спектр и используются для нестандартного решения комплекса задач (например, в теории социального управления, в современной экологии). Доминирующей становится тенденция, при которой разнородные знания, методы и сообщества специалистов группируются не по дисциплинам и окостеневшим парадигмам, а по динамичным, сменяющимся и преобразующимся синтагмам.

1.5 Методы эмпирического и теоретического исследования

Эмпирическое исследование нацелено на непосредственное изучение явлений, теоретическое - на выяснение сущности и объективной закономерности в изучаемом процессе, явлении. В эмпирическом исследовании используются приборы, экспериментальные установки и другие материальные средства, эмпирический язык науки. На теоретическом уровне в качестве средства познания выступает теоретический язык, в терминах которого представлены абстрактные объекты, являющиеся логическими реконструкциями реальных объектов и их связей, отношений.

К основным методам эмпирического исследования относятся наблюдение, измерение, сравнение, эксперимент и описание.

Наблюдение - целенаправленное восприятие предметов и явлений, непосредственное и с помощью приборов, в их естественном виде. Наблюдение опирается не только на работу органов чувств, но и на вырабатываемую наукой способность истолковывать чувственные данные. Только теория, указывал А. Эйнштейн, может определить, что и как наблюдать. Различают наблюдение внешнее (со стороны) и включенное (наблюдатель выступает участником изучаемого процесса).

Опытное естествознание, начало которому положено трудами Леонардо да Винчи, Г. Галилея и И. Ньютона, своим расцветом обязано применению измерений. Измерение есть установление одной величины с помощью другой, принятой за эталон, а также описание этой процедуры.

Сравнение - познавательная операция, выявляющая сходство или различие однородных предметов, объектов либо фаз развития одного и того же объекта, явления.

К постановке эксперимента прибегают тогда, когда необходимо изучить некоторое состояние предмета наблюдения, естественным образом не всегда присущее предмету. Воздействуя на предмет в специально подобранных условиях, исследователь целенаправленно вызывает нужное ему состояние предмета, а затем наблюдает его. Эксперимент предваряется какими-то ранее созданными вариантами теоретических абстрактных схем. Современные эксперименты разнообразны: охватывают лабораторные опыты, области техники, технологии, экономики, экологические и демографические системы, включают научные методы организации труда и управления и т.п. Возможен и «мысленный» эксперимент. В обществе применение эксперимента затруднено тем, что подвергаемые испытанию социальные объекты невозможно изолировать от других общественных явлений, что нарушает «чистоту» опыта. К тому же большинство социальных явлений невоспроизводимо в лабораторных условиях. В эксперименте сказывается активность субъекта, в нем слиты познавательная и преобразующая функции.

Полученные данные методов эмпирического исследования систематизируются и классифицируются при помощи графиков и таблиц, эмпирически обобщаются, описываются. Описание осуществляется в форме обычного языка, а также при помощи языка науки (символов, матриц, графиков и т.д.). Описание сопровождается оценками. В итоге получают эмпирические факты. В современном гуманитарном и историческом познании факты, в отличие от их трактовки в классической рациональности, рассматриваются незамкнутыми, открывающими свои разнообразные свойства. Эмпирические факты и вытекающие из них эмпирические зависимости являются непосредственным базисом теории.

К общелогическим методам научного познания, пронизывающим эмпирическое и теоретическое исследование, относятся взаимосвязанные между собой анализ и синтез, индукция и дедукция, абстрагирование и обобщение. Анализ - мысленное или фактическое разделение предмета на его отдельные части, составные элементы. Синтез - процесс реального или мысленного объединения различных сторон, частей предмета в единое образование (систему). Индукция - метод исследования, связанный с движением мысли от единичного к общему. Дедукция - восхождение процесса познания от общего к единичному. Перечисленные методы в отдельности оказываются недостаточными для научного познания. Они должны быть соединены. К. Маркс, изучая капиталистический способ производства, сначала мысленно расчленил его на отдельные стороны (производство, обращение, распределение) и изучил каждую из них. Затем, объединив уже исследованные стороны, он получил знание о капитализме в целом. Здесь применен единый аналитико-синтетический способ познания, где переплетаются индукция и дедукция.

Эмпирические методы связаны с извлечением научной информации непосредственно из реальных объектов. В теоретическом же познании используются методы, основанные на анализе абстракций (как отдельно взятых понятий и категорий, так и их систем). Абстрагирование представляет собой некоторый отход (отвлечение) от непосредственно воспринимаемой действительности.

Особенно велика роль абстракции при изучении общества. Здесь сила абстракции, по мнению Маркса, заменяет микроскоп и все прочие приборы. К другим некоторым особенностям социального научного познания относятся:

Преимущественная ориентация на качественный анализ событий, явлений, изучение единичного, индивидуального на основе общего, закономерного;

Обращенность прежде всего на мир человека, который выступает и как объект познания, и как субъект познания и преобразования действительности;

Социальное познание пронизано ценностным и этическим подходами;

В области познания социальных процессов практика обычно понимается как исторический опыт;

Общественным отношениям присущ более противоречивый и многомерный характер, нежели связям в природе (отклонения, зигзаги, обратные и «попятные» движения, случайности, альтернативы и т.п.). Это обусловливает более выраженное «вероятностное» и динамичное социальное познание, отсутствие общепризнанных парадигм, расплывчатость его эмпирического базиса. Общество в его культурном измерении, отмечал М. Вебер, не должно представляться в виде «замкнутой системы понятий..., в некоем окончательном членении». В отличие от естествознания, социальной науке сложнее выявить социальные факты и труднее «измерить» социальные события. Создается впечатление многозначности, мозаичности, произвольности. Следовательно, в поиске социальной истины возрастает значение методологии, которая ориентируется на выявление объективных оснований, главных направлений детерминации, четких контекстов.

В отличие наук о природе, где субъект противопоставлен объекту, картине мира, в гуманитарном знании субъект включен в объект - жизнь общества, формы культуры, виды искусства, религию и т.п. Познающий субъект, «погруженный» в историческую реальность, контактирует с другими Я.

Если естественнонаучное мышление наделено на поиск объективной информации о мире, не зависящей от личности исследователя (критерий воспроизводимости данных), то в социальном познании отсутствует воспроизводимость или верифицируемость гуманитарного знания, в сравнительно большей степени присутствует субъективная интерпретация полученных данных. Один и тот же набор фактов, один и тот же фрагмент истории может быть представлен в различных соперничающих друг с другом реконструкциях, претендующих на описание, понимание и объяснение социальной реальности. Например, ввод американских войск в Ирак в начале XXI в. интерпретируется многозначно: борьба с терроризмом; попытка утверждения демократических норм правления; утверждение контроля за нефтяными богатствами; испытание новейшего оружия; «игра мускулами», т.е. проявление гегемонизма и т.д. При этом понимание движется по герменевтическому кругу, когда понимание от части к целому и от целого к части многократно меняется местами. М. Вебер считает, что человек (ученый, политик и т.п.) не может «выбросить за борт» свои субъективные интересы и пристрастия. Однако в чисто научном аспекте необходимо стремиться к строгой объективности («свободе от оценки») в сфере социального познания. Видимо, названная антиномия неразрешима в целом, хотя в отдельных своих аспектах может быть преодолена.

Возможен ли, в связи с этим, момент объективной истины в процессе постижения социальной реальности? Возможен, ибо субъект, проявляя свое собственное видение происходящего, имеет это с некоторой необходимостью, опирается на общую логику человеческой жизнедеятельности.

В целом, социогуманитарное познание характеризуется предметно-практической, когнитивной и ценностно-этической направленностью. В связи с усиливающейся технологизацией и автоматизацией деятельности возрастает значение коммуникации и рационализации управления. Идеальность мышления связывается с реальными ситуациями социального действия. В социальном познании встает задача выяснения границ и условий реализации управленческой функции сознания.

Движение мысли идет от абстрактного к конкретному. Абстрактное - сторона, момент, часть целого, фрагментарное. Конкретное выступает результатом воссоединения выделенных в процессе абстрагирования понятий в нечто единое, целостное. Конкретное являет собой объект, отраженный в мышлении в единстве его компонентов, связей и отношений. К. Маркс в «Капитале», отправляясь от понятия товара - исходной абстракции, характеризующей сущность капиталистического производства, восходил к абстракциям все более богатым и содержательным (деньги, капитал, прибавочная стоимость, заработная плата и др.), постепенно воссоздавая всестороннюю картину капиталистической экономики в целом. В результате капиталистическое производство предстало как конкретное, как «синтез многих определений», как «единство многообразного». Одновременно Маркс изучил огромное множество фактов капиталистической действительности, доступных непосредственному созерцанию. Эти факты явились исходным материалом для абстрагирования, выделения понятий, а затем восхождения от абстрактного к конкретному.

Абстрагирование неких свойств и отношений объектов создает основу для их объединения в единый класс. Обобщение - логический прием, в результате которого устанавливаются общие свойства и признаки объектов. Пределом обобщения выступают философские категории. Обобщение связано с индукцией и абстрагированием. Противоположность обобщения - ограничение.

Основными формами теоретического научного познания являются идея, проблема, гипотеза, теория (концепция).

Идея - понятие, обозначающее смысл, значение, сущность вещи. Идея выступает в качестве принципа объяснения явлений, отражает ценностное отношение к сущему, намечает выход за пределы наличного знания. Например, идея Большого взрыва сущностно осмысливает структуризацию материи в нашей Вселенной, идея эволюции - преобразование простых, зародышевых форм в более совершенные, идея хаоса подчеркивает, что все является в конечном счете непредсказуемым.

Проблемы вырастают из потребностей практической деятельности человека в ходе стремления к новому знанию. К. Поппер рассматривал развитие науки как переосмысление проблем, переход от одних проблем, менее глубоких и плодотворных, к проблемам более глубоким и открывающим более обширные теоретические перспективы. Проблемы возникают, по мнению этого философа, либо как следствие противоречия в отдельной теории, либо при становлении двух различных теорий, либо в результате столкновения теории с наблюдениями. Постановка проблемы включает в себя предварительное знание путей ее решения. Разрешение одной научной проблемы ведет к появлению новых проблем, ибо расширение круга знаний сопровождается увеличением области неизведанного (на это обратил внимание Зенон). Проблема есть единство неизвестного и известного, незнания и знания. Без постановки вопросов целенаправленный научный поиск невозможен, а без ответов на поставленные вопросы наука останется лишь собранием предположений. Решить проблему означает обосновать выбор более истинной (эмпирически богатой, логически совершенной) теории.

Необходимым моментом развития научного знания выступает выдвижение, обоснование и доказательство гипотез. Гипотеза - знание, в основе которого лежит предположение, это еще не доказанное теоретическое построение (рассуждение). Одни гипотезы носят предварительный характер, служат для первоначальной систематизации фактов, другие используются для более глубокого объяснения фактов и со временем, после подтверждения их практикой, могут стать достоверными теориями. Часто в науке одновременно существует несколько конкурирующих между собой гипотез. Одним из методов теоретического исследования является гипотетико-дедуктивный. Этот метод основан на выведении (дедукции) заключений из системно связанных между собой гипотез и других посылок, истинное значение которых неизвестно. Заключение, полученное на основе данного метода, носит вероятностный характер.

Обоснование и доказательство гипотезы превращает ее в теорию. Теория отражает закономерности, сущностные характеристики определенной области действительности.

По своему строению научная теория представляет собой целостную и внутренне дифференцированную систему взаимосвязанных понятий, законов и высказываний об изучаемых объектах. В построении теории участвуют логика и методология, философские установки и ценностные факторы.

Теория резюмируется в методах, а методы развертываются в теорию. Теория, считал А. Уайтхед, «навязывает метод», который применим только к теориям соответствующего вида. Теория и метод дополняют друг друга и вместе с тем они различаются: «а) теория - результат предыдущей деятельности, метод - исходный пункт и предпосылка последующей деятельности; б) главные функции теории - объяснение и предсказание (с целью отыскания истины, законов, причин и т.п.), метода - регуляция и ориентация деятельности; в) теория - система идеальных образов, отражающих сущность, закономерности объекта, метод-система регулятивов, правил, предписаний, выступающих в качестве орудия дальнейшего познания и изменения действительности; г) теория нацелена на решение проблемы - что собой представляет данный предмет, метод - на выявление способов и механизмов его исследования и преобразования».

Существуют объекты (например, становление Вселенной, возникновение человека и т.п.), которые не могут быть воспроизведены в опыте. Для их изучения прибегают к историческим и логическим методам, которые применяются при построении теоретических знаний о сложных исторически развивающихся объектах.

Использование исторического метода предполагает описание реального процесса возникновения и развития объекта, осуществляемое с максимальной полнотой. Задачей такого исследования является раскрытие конкретных условий, обстоятельств и предпосылок различных явлений, их последовательности и смены одних стадий развития другими. Без исследования генезиса невозможно понять явления живой природы, характер геологических, исторических и других процессов. В наибольшей степени генезисно-исторический подход применим к обществу.

Конкретно-исторический анализ определенных ситуаций дает возможность правильно осмыслить и объяснить Реальный ход истории, выявить ее «уроки». В историческом уроке огромное значение приобретает осмысление

прошлого в связи с потребностями и возможностями современности и будущего. Например, противоборство в прошлом тенденций чрезмерного огосударствления общественной жизни и гуманно-демократического развития во многом объясняет современное переходное состояние общества в СНГ, где наличествуют элементы авторитаризма и демократии.

Принцип историзма означает: обусловленность настоящего и будущего прошлым; рассмотрение явлений как в контексте общего мирового развития, так и специфики той или иной страны; относительное перенесение характеристик особенных исторических форм на иные, более универсальные социально-исторические состояния (например, анализ капитализма для Маркса стал основой создания диалектико-материалистического понимания истории в целом); учет единства объективных условий и субъективных факторов - человеческого выбора, идеалов, воли к действию.

Исторический метод органично перерастает в логический, который фиксирует объективную логику развития событий, отвлекаясь от их частных конкретно-исторических особенностей. В ходе логического анализа исследование более поздних и развитых форм процесса дает ключ к пониманию и изучению ранних его форм.

Одним из методов теоретического исследования выступает аналогия - прием познания, при котором на основе сходства объектов в одних признаках заключают об их сходстве и в других признаках. Аналогия одновременно является общелогическим методом познания. Близок к аналогии метод моделирования - прием познания, который позволяет посредством одной системы (естественной, а чаще искусственной, созданной человеком) воспроизвести другую, более сложную систему, являющуюся объектом исследования. Модель выступает как некоторая идеализация, упрощение действительности. (Таковы, например, наивные, не связанные с наукой представления Анаксимандра о Земле как плоском цилиндре, вокруг которого вращаются наполненные огнем полые трубки с отверстиями.) Представления античных философов (Демокрита, Эпикура и др.) об атомах, их форме, способах соединения, об атомных вихрях и ливнях, о круглых и гладких или крючковатых частицах, сцепленных между собой, являются прообразами современных моделей, отражающих

ядерно-электронное строение атома вещества. Достаточно выраженные попытки моделирования относятся к эпохе Возрождения, когда Филиппо Брунеллески создал модель собора во Флоренции, а Микеланджело Буанаротти - модель купола собора Святого Петра в Риме.

Различаются модели материальные и идеальные. Материальные модели - вещественное воспроизведение исследуемого объекта (например, модели различных органов и тканей живого организма). Идеальные модели представляют собой совокупность мыслительных элементов - математических формул, уравнений, логических символов, различного рода знаков и т.д. В современном познании компьютер способен моделировать самые различные процессы (например, колебания рыночных цен, динамику народонаселения, взлет и выход на орбиту искусственного спутника Земли, химическую реакцию и т.д.).

Идеализация - мыслительная процедура, связанная с образованием абстрактных (идеализированных) объектов, не существующих в действительности («точка», «идеальный газ» и т.д.). Такие объекты, тем не менее, - не фикции, а опосредованное выражение реальных процессов. Они представляют собой некоторые предельные случаи последних, служат средством их изучения и построения теоретических представлений о них. Идеализация тесно связана с абстрагированием.

Важную роль в научном познании играет формализация, которая предполагает при изучении объектов использование знаков, формул и т.п. Формализация позволяет уточнять вводимые понятия, придавать им строгую логическую форму. При этом переходят, как правило, от неявного (имплицитного) их смысла к явному и строго определенному (эксплицитному) смыслу. Понятия приводятся в логическую субординацию между собой, одни понятия выводятся из других. В точном естествознании формализация во многом совпадает с математизацией теории. Вместе с тем, как показал Гёдель, в теории всегда остается неформализуемый остаток, т.е. ни одна теория не может быть полностью формализована.

В научном познании под влиянием феномена нелинейности, успехов квантовой теории поля, квантовой космологии, синергетики происходят определенные сдвиги. Меняется стиль научного мышления: возрастает степень неопределенности, локальной непредсказуемости (непредсказуемо поведение объекта в зоне бифуркации, тогда как общая картина его динамики достаточно предсказуема).

В современной науке нередки случаи неадекватной трактовки результатов, получаемых «на выходе» достаточно длинных цепей абстракций и обобщений. Происходит не отказ от рациональности вообще, а либерализация (смягчение) критериев рациональности. Современный теоретик при построении абстрактных моделей часто руководствуется не столько традиционными жесткими и эмпирически обоснованными принципами (например, принципами наблюдаемости, соответствия, симметрии и др.), сколько более «мягкими» регулятивами и критериями, такими как простота, когерентность, логическая совместимость, семантическая согласованность, красота и др.

Научное знание усложняется, знания разных наук перекрещиваются, взаимно оплодотворяя друг друга. Сфера научного познания расширяется и углубляется. Наука перешла к исследованию объектов принципиально нового типа - сверхсложных, самоорганизующихся систем, включающих в себя человека, машины, технологии, экосреду, социокультурную среду, все социальные объекты, рассматриваемые в аспекте функционирования и развития.

В целом все методы исследования, эмпирические, теоретические и общелогические составляют единый комплекс. Эмпирические исследования, обнаруживая новые факты и зависимости, стимулируют развитие теории. Имеется и обратная зависимость: эмпирическое знание является результатом саморазвития предшествующей теории. Теоретическая деятельность интерпретирует основные эмпирические факты и зависимости, предсказывает и вовлекает в массив исследования новые факты, организует эмпирическую деятельность.

1.6 Этика науки

Этос науки, по определению американского социолога Р.К. Мертона (XX в.), это эмоционально окрашенный комплекс правил, предписаний и обычаев, верований, ценностей и предрасположенностей, которые считаются обязательными для ученого. Мертон называет такие этические черты науки:

а) универсализм - истинность утверждений независимо от возраста, пола, авторитета, титулов, званий тех, кто их формулирует;

б) открытость знаний для дальнейшего использования;

в) бескорыстность как стимул научной деятельности;

г) организованный скептицизм, т.е. каждый ученый несет ответственность за оценку доброкачественности того, что сделано им и его коллегами.

Важнейшими нормами научной этики являются: отрицание плагиата; неприятие фальсификации данных эксперимента; бескорыстный поиск и отстаивание истины; результат должен быть новым знанием, логически, экспериментально обоснованным.

Чтобы стать полноценным научным работником, надо помимо профессионализма, методологической вооруженности, диалектического стиля мышления выработать определенные социально-психологические качества. Они формируются как через коллектив, общение, так и индивидуально. Среди этих качеств одно из важнейших - творческая интуиция. Надо быть «вписанным» в коллектив и одновременно проявлять самостоятельность, оригинальность, быть «терпимым» к людям, идеям и вместе с тем принципиальным. Ученый, наряду с уверенностью, постоянно сомневается, стремится обнародовать свои результаты и нередко ограничивает это желание, чтобы сохранить авторское право на идеи, стремится к «многознанию», широкой информированности и порой противится этому, чтобы не оказаться в плену чужих мыслей, не перегружать себя часто ненужной информацией. (Уже Демокрит понимал, что многознание не научает быть мудрым.) «Одержимый», интенсивно занятый научной деятельностью исследователь, не должен отрываться от реального мира и превращаться в подобие робота.

Обозначенный Мертоном универсализм в науке (своеобразная «научная демократия») не исключает научную иерархию, стратификацию участников научного сообщества по степеням и званиям (научную элитарность). Это исключает «уравниловку» в науке и создает благоприятную конкуренцию для проявления учеными своих способностей, одаренности. В современном динамичном мире весьма важно, чтобы научные работники не замыкались на отдельных темах, направлениях исследований и проявляли мобильность, умение переключаться на иные темы, что предполагает широкий, гибкий, творческий стиль мышления. Конечно, широта мышления должна сочетаться с глубоким профессионализмом, в том числе в узкой специализации научной деятельности.

Является ли знание силой, служащей человеку, не оборачивается ли оно против него? Такой вопрос издавна волнует человечество. Сократ учил, что познание является необходимым условием и составной частью благой, доброй жизни. Противоположное мнение высказал Аристотель: кто движется вперед в науках, но отстает в нравственности, тот более идет назад, чем вперед. Аналогично рассуждал Ж.-Ж. Руссо, считавший, что в какой степени нарастала мощь науки и искусства, в той же степени происходило падение моральных устоев общества. Проблема соотношения истины и добра перерастает в проблему связи свободы и ответственности в деятельности ученых, в проблему комплексного и долговременного учета неоднозначных последствий развития науки.

Развитие науки помимо пользы создает угрозу здоровью исследователя и пользователя (в областях ядерной физики, компьютерных технологий, молекулярной биологии, генетики, медицины и др.). Современная биомедицина расширяет возможности контроля и вмешательства в процессы зарождения, протекания и завершения человеческой жизни. Но при этом возникает опасность разрушения исходной биогенетической основы человека, которая сложилась в ходе продолжительной эволюции. Католическая церковь, налагая запрет на клонирование человека, исходит из того, что рождение человека должно происходить естественным образом, иначе у родившегося не будет души. Клонирование в растениеводстве, животноводстве, рыбном хозяйстве и т.п., вероятно, оправданно. Применительно к человеку замена деформированных органов и тканей также вроде бы приносит пользу. Однако это влечет проблему организации производства такого рода материалов, следовательно, донорства. Последнее может привести к социально негативным последствиям и криминальному бизнесу.

При оценке результативности науки необходим конкретный подход к конкретным научным идеям, затрагивающим интересы живущих и будущих поколений. А для этого необходимо широкое, гласное, демократическое, а главное, компетентное обсуждение предлагаемых решений. Сложность состоит в том, что широкое участие людей в экспертизе и компетентность могут оказаться несовместимыми.

Метафизическое разъединение науки и нравственности порой приводит к тому, что многие ученые считают своим долгом лишь поиск «чистой» истины, а практическое применение и учет последствий якобы должны осуществлять другие специалисты. Конечно, разделение труда в науке, как и в любой деятельности, существует, но от ученого требуются высокое самосознание и чувство нравственной ответственности за возможные последствия тех или иных предлагаемых научных проектов (особенно в генной инженерии, биотехнологии, биомедицинских и генетических исследованиях человека). Идея неограниченной свободы исследования, которая была прогрессивной на протяжении многих столетий, ныне не может приниматься безоговорочно.

Знание не всегда ведет к добродетели (например, создание на основе научного знания оружия массового уничтожения людей). Но отсюда не вытекает, будто путем к добродетели является невежество. Сейчас сталкиваются позиции сциентизма (слепого преклонения перед наукой) и антисциентизма (страха перед наукой). Оправданными можно считать только те научные решения, которые восприняты обществом на основе достаточно полной информации и где наличествует не только высокий профессионализм, но и учтены социальные, экологические и моральные компоненты (последствия).

Наука имеет фундаментальную и инструментальную (прикладную) ценность, выполняет праксиологическую Функцию, ибо в конечном счете нацелена на благо общества и человека, способствует эффективному осуществлению социальных технологий в хозяйственно-экономической, политической, управленческой, образовательной и иных сферах.

Мировоззренческая ценность науки заключается в том, что наука формирует стратегическую позицию человека к действительности, цели, ценности, идеалы.


Список использованных источников

1. Философия / Под общ. ред. Я.С. Яскевич – Минск, 2006 – 308 с.

2. Демидов, А. Б. Философия и методология науки: курс лекций / А.Б.Демидов., 2009 - 102 с.

3. Канке В.А. Философия. Исторический и систематический курс / В.А. Канке – М., 1997 – 339 с.

4. Калмыков В.Н. Философия: Учебное пособие / В.Н. Калмыков – Мн.: Выш. шк., 2008. – 431 с.

1. Проблема возникновения науки.

2. Научные знания на Древнем Востоке

3. Становление науки и научные достижения античной эпохи

Наши представления о сущности науки не будут полными, если мы не рассмотрим вопрос о причинах, ее породивших. Здесь мы сразу сталкиваемся с дискуссией о времени возникно­вения науки.

Когда и почему возникла наука? Существуют две крайние точки зрения по этому вопросу. Сторонники одной объявляют научным всякое обобщенное абстрактное знание и относят возникновение науки к той седой древности, когда человек стал делать первые орудия труда. Другая крайность - отнесе­ние генезиса (происхождения) науки к тому сравнительно позднему этапу истории (XV - XVII вв.), когда появляется опытное естествознание.

Современное науковедение пока не дает однозначного от­вета на этот вопрос, так как рассматривает саму науку в не­скольких аспектах. Согласно основным точкам зрения наука - это совокупность знаний и деятельность по производству этих знаний; форма общественного сознания; социальный институт; непосредственная производительная сила общества; система профессиональной (академической) подготовки и воспроизвод­ства кадров. В зависимости от того, какой аспект мы будем принимать во внимание, мы получим разные точки отсчета развития науки:

Наука как система подготовки кадров существует с сере­дины XIX в.;

Как непосредственная производительная сила - со второй половины XXвв

Как социальный институт - в Новое время;

- как форма общественного сознания - в Древней Греции;

Как знания и деятельность по производству этих знаний - с начала человеческой культуры.

Разное время рождения имеют и различные конкретные науки. Так, античность дала миру математику, Новое время - современное естествознание, в XIX в. появляется обществознание.

Для того чтобы понять этот процесс, нам следует обра­титься к истории.

Наука - это сложное многогранное общественное явле­ние: вне общества наука не может ни возникнуть, ни разви­ваться. Но наука появляется тогда, когда для этого создаются особые объективные условия: более или менее четкий соци­альный запрос на объективные знания; социальная возмож­ность выделения особой группы людей, чьей главной задачей становится ответ на этот запрос; начавшееся разделение тру­да внутри этой группы; накопление знаний, навыков, позна­вательных приемов, способов символического выражения и передачи информации (наличие письменности), которые и подготавливают революционный процесс возникновения и распространения нового вида знания - объективных обще­значимых истин науки.



Совокупность таких условий, а также появление в культуре человеческого общества самостоятельной сферы, отвечающей критериям научности, складывается в Древней Греции в VII-VI вв. до н.э.

Чтобы доказать это, необходимо соотнести критерии науч­ности с ходом реального исторического процесса и выяснить, с какого момента начинается их соответствие. Напомним крите­рии научности: наука - это не просто совокупность знаний, но и деятельность по получению новых знаний, что предполагает существование особой группы людей, специализирующейся на этом, соответствующих организации, координирующих иссле­дования, а также наличие необходимых материалов, техноло­гий, средств фиксации информации; теоретичность - по­стижение истины ради самой истины, рациональность, системность.

Прежде чем говорить о великом перевороте в духовной жизни общества - появлении науки, происшедшем в Древней Греции, необходимо изучить ситуацию на Древнем Востоке, традиционно считающемся историческим центром рождения цивилизации и культуры.

2.Начиная со IV по IIтыс. до н.э., на Востоке возникают четыре центра цивилизации: междуречье Тигра и Евфрата, долины Нила, Инда и Хуанхэ. В истории развития этих государств, технике, которая там применялась, немало общего.

Древнейшая в мире цивилизация зародилась в Южной Месопотамии, в междуречье Тигра и Евфрата, она называлась Шумер. В IV тыс. до н.э. здесь возникли земледельческие поселения, были построены ирригационные каналы и другие оросительные сооружения. Ирригация привела к росту населения, и скоро на берегах Тигра и Евфрата появились первые города-государства, с общей культурой: Ур, Урук, Умма, Эриду, Киш, Ниппур, Ларса, Лагаш.

С помощью простейших инструментов шумеры построили каналы, которые образовали огромную ирригационную систему. Поливное земледелие способствовало повышению урожайности и росту населения. Наравне с земледелием важнейшим занятием стало ремесло. Из местного сырья была лишь глина, тростник, асфальт, шерсть, кожа и лен. Среди наиболее значимых изобретений было колесо, которое появилось 5 тыс. лет назад. Колесо было самым великим открытием в истории, так как это было принципиально новое изобретение. На основе колеса появился гончарный круг, достигает расцвета керамическое производство. Гончарные сосуды становятся предметом экспорта. Обмен достижениями с другими государствами способствовал тому, что гончарный круг, колесо и ткацкий станок появились в других цивилизациях, например, в Египте. Позднее в Месопотамии было изобретено стекло.



Металлообработка в Междуречье появилась раньше, чем в других цивилизациях, в VI тыс. до н.э. Строительная техника Междуречья отличалась своеобразием, так как нехватка леса и камня и сухой климат способствовал использованию сырцового кирпича. Из него строили дома, крепостные стены, храмовые башни-зиккураты. Обожженный керамический кирпич из-за дороговизны использовался для облицовки. Среди памятников архитектуры Междуречья – Висячие сады Семирамиды, Вавилонская башня и крепостные стены Вавилона с воротами, посвященными богине Иштар.

Египетская цивилизация также возникла на основе ирригационного земледелия, сочетавшегося с животноводством и ремеслом. Произошел переход к высокоурожайному поливному земледелию, вызвавшему выделение ремесла в самостоятельную отрасль. Образование государства и становление царской власти позволили сконцентрировать усилия многих египтян на строительстве огромных и сложных сооружений хозяйственного и культового значения.

Специфика расположения Древнего Египта в том, что обитаемая территория располагалась в узкой долине Нила, которая орошалась естественным разливом реки. Появление в Египте колодезного журавля, «шадуфа», позволило поднимать воду на «высокие поля», удаленные от русла реки, что в 10 раз увеличило площадь обрабатываемых земель.

Металлообработку в Египте освоили в IV тысячелетии до н.э. Сначала египтяне выплавляли медь, а в III тысячелетии – бронзу с повышенным содержанием никеля. Вскоре они освоили «классическую бронзу» сплав меди с оловом. Египтяне знали еще золото, серебро, свинец.

Среди оригинальных изобретений египетских ремесленников были фаянс и глазурь. Важным достижением стало изобретение пастового стекла. По всему древнему миру славились египетские фаянсовые бусы, покрытые глазурями. Отдельным ремеслом было изготовление папируса.

Архитектура и строительное дело египтян имело отличия от Междуречья. Из камня строились только храмы и погребальные сооружения, в первую очередь пирамиды. Самыми яркими сооружениями Древнего Египта являются пирамиды, Сфинкс, храмы Луксор и Карнак, скальный храм Рамсеса в Абу-Симбеле. Пирамида Хеопса имеет высоту 146 м и состоит из 2,3 млн. каменных блоков, каждый весом около 2 т. Дошедшие до нас памятники египетского зодчества демонстрируют высочайшее мастерство камнетесов и строителей.

Третьим центром ранней цивилизации стала долина реки Инд на северо-западе полуострова Индостан, где располагалась одна из наименее изученных цивилизаций Древнего Востока. Эту цивилизацию называют также цивилизацией Мохенджо-Даро или Хараппской. Здесь, как и в Египте и Междуречье, сложилось государственное образование, в основе экономики которого было ирригационное земледелие и скотоводство. Новациями в сельском хозяйстве были культивированные рис и хлопок, которые в Индской цивилизации появились раньше, чем в других районах Древнего Востока. Местные жители впервые стали одомашнивать кур. Известно об использовании здесь водочерпального колеса, но о существовании крупных оросительных сооружений данных нет.

Индская цивилизация была знакома с гончарным кругом, а керамические строительные материалы получили широкое распространение. Прочти все постройки были из обожженного кирпича, водопроводные и канализационные трубы были керамическими, полы в домах, дворах и даже улицы мостились керамическими плитами на илистом или асфальтовом растворе. Металлообработка началась раньше, чем в Египте, в IV тыс. до н.э. здесь научились выплавлять бронзу. Из меди и бронзы делали орудия труда, инструменты, утварь, статуэтки, украшения. Были известны плавка и пайка меди и ее сплавов.Хлопководство давало сырье для производства хлопковых тканей, которые шли на экспорт.

Китайская цивилизация начала складываться воIIтыс. до н.э. Особенностью китайской культуры было то, что сложилась самобытная цивилизация, не имевшая контакта с другими государствами Древнего Востока. Предпосылками возникновения государства стало развитие земледельческой экономики, но распространение металлических орудий здесь тормозилось. Специфика Китая проявилась в освоении некоторых сельскохозяйственных культур, здесь впервые начали выращивать чай, культивировать тутовые и лаковые деревья.

В Китае были освоены технологии, долгое время не известные Западу: шелк, бумага, фарфор. Китайцы самостоятельно совершили ряд открытий: изобрели колесо, гончарный круг, освоили технологию плавки меди, олова, получения сплава бронзы, узнали токарный и ткацкий станки. Другими сферами китайской изобретательской мысли была техника использования нефти и природного газа. Для этих целей строились деревянные резервуары для хранения этого сырья и делались бамбуковые газопроводы. Китайцы изобрели компас, взрывчатые и пороховые смеси, которые использовались для фейерверков.

Своим появлением наука обязана практическим потребностям, с которыми столкнулись ранние цивилизации. Необходимость планировки и строительства ирригационных, общественных и погребальных сооружений, определение сроков сбора и посева урожая, вычисление объема налогов и учет расходов государственного аппарата вызвал к жизни на Древнем Востоке отрасль деятельности, которую можно назвать сферой науки и образования. Наука была тесно связана с религией, а научными и образовательными центрами были храмы.

Одним из важнейших признаков цивилизации была письменность. Это качественный скачок в развитии средств накопления и передачи информации, явившийся следствием социально-экономического и культурного развития. Она появилась тогда, когда объем знаний, накопленных обществом, превысил уровень, при котором они могли передаваться только устно. Все дальнейшее развитие человечества связано с закреплением в письменности накопленных научных и культурных ценностей.

Сначала для фиксации информации использовали значки-идеограммы, потом стилизованные рисунки. Позднее складывается несколько видов письменности, и только на рубеже II-Iтыс. до н.э. финикийцы создали на основе клинописи алфавит из 22 букв, с помощью которого было создано большинство современных письменностей. Но не до всех частей древнего мира он дошел, и Китай, например, до сих пор использует иероглифическую письменность.

Древнее письмо Египта появилось в конце IV тыс. до н.э. в виде идеограмм-иероглифов. Хотя египетская письменность постоянно модифицировалась, она до конца сохраняла иероглифическую структуру.В Междуречье сложилась своя форма письменности, называемая клинописью, так как идеограммы здесь не писались, а оттискивались на плитке из сырой глины острым инструментом. В Древнем Китае первыми формами письма были иероглифы, которых сначала было около 500, а позднее их число превысило 3000. Их неоднократно пытались унифицировать и упрощать.

Для Древнего Востока характерно развитие многих отраслей науки: астрономии, медицины, математики. Астрономия была необходима всем земледельческим народам, а ее достижениями стали позднее пользоваться моряки, военные и строители. Учеными или жрецами предсказывались солнечные и лунные затмения. В Междуречье был выработан солнечно-лунный календарь, но египетский календарь оказался точнее. В Китае наблюдали за звездным небом, строились обсерватории. По китайскому календарю год состоял из 12 месяцев; дополнительный месяц добавлялся в високосном году, который устанавливался один раз в три года.

Древние врачи владели различными методами диагностики, практиковалась полевая хирургия, составлялись руководства для врачей, использовались медицинские препараты из трав, минералов, ингредиентов животного происхождения и т. д. Древневосточные врачи применяли массаж, перевязки, гимнастику. Особенно славились медики египтян, которые освоили хирургические операции, лечение глазных болезней. Именно в Древнем Египте возникла медицина в современном понимании.

Уникальными были математические познания. Математика появились раньше письменности. Система счета была везде различной. В Месопотамии существовала позиционная система цифр и шестидесятеричный счет. От этой системы ведет свое начало деление часа на 60 минут, а минуты на 60 секунд и т.д. Египетские математики оперировали не только четырьмя действиями арифметики, но умели возводить числа во вторую и третью степень, вычислять прогрессии, решать линейные уравнения с одним неизвестным и т.д. Больших успехов они достигли в геометрии, вычисляя площадь треугольников, четырехугольников, круга, объемы параллелепипедов, цилиндров и неправильной пирамиды. У египтян была десятичная система счета, такая же, как и везде сейчас. Важный вклад в мировую науку внесли древнеиндийские математики, создав десятичную позиционную систему счета с применением нуля (который у индийцев обозначал «пустоту»), принятую в настоящее время. Получившие распространение «арабские» цифры в действительности заимствованы у индийцев. Сами арабы называли эти цифры «индийскими».

В числе других наук, зародившихся на Древнем Востоке можно назвать философию, первым философом считается Лао-цзы (VI–V вв. до н.э.).

Многие достижения древневосточных цивилизаций вошли в арсенал европейской культуры и науки. В основе греко-римского (юлианского) календаря, которым мы пользуемся сегодня, лежит египетский календарь. В основе европейской медицины лежит древнеегипетская и вавилонская медицина. Успехи древних ученых были невозможны без соответствующих достижений в астрономии, математике, физике, химии, медицине и хирургии.

Ближний Восток был родиной многих машин и инструментов, здесь созданы: колесо, плуг, ручная мельница, прессы для выдавливания масла и сока, ткацкий станок, грузоподъемные механизмы, выплавка металла и т.д. Развитие ремесла и торговли привело к образованию городов, а превращение войны в источник постоянного притока рабов повлияло на развитие военного дела и вооружения. Крупнейшим достижением периода является освоение способов выплавки железа. Впервые в истории начали строиться ирригационные сооружения, дороги, водопроводы, мосты, крепостные сооружения и корабли.

Практические навыки и потребности производства стимулировали развитие научных знаний, так как для решения вопросов, связанных со строительством, перемещением больших грузов и т.д. требовались математические расчеты, чертежи и знания свойств материалов. Развитие получили в первую очередь естественные науки, так как они востребованы необходимостью решения задач, выдвигаемых практикой. Основным методом древневосточной науки были умозрительные заключения, не предполагавшие проверки опытом. Накопленные знания и научные открытия заложили основы дальнейшего развития науки.

3. Античностью или античной цивилизацией называют период истории с XII в. до н.э. по 476 г. н.э. В основном под античной цивилизацией понимаются Древняя Греция и Рим. Особенностью античной цивилизации было широчайшее применение рабского труда, что создавало условия для развития науки, искусства и общественной жизни, зато тормозило развитие технических приспособлений и устройств. Дешевая рабочая сила рабов заменяла большинство механизмов и провоцировала застой в технике. Фактически только одна отрасль развивалась и совершенствовалась – военная техника. В течение все античной цивилизации война была непременным явлением жизни античного общества. Войны велись постоянно: ради захвата добычи, новых территорий, а главное – рабов, основы производства Древней Греции и Древнего Рима.

Древняя Греция стала преемницей ранних культур, поэтому многое из технических достижений и изобретений было заимствованно из Египта, Малой Азии. Античная цивилизация существовала в условиях классического рабства, когда раб был основным работником, превращенным в говорящее орудие труда.

Набор машин античности ограничен: водоподъемные механизмы; деревянное водоподъемное колесо, которое вращается с помощью рабов; водоотливное приспособление с «архимедовым винтом», вращаемое рабом. Подъемные машины триспасты применялись в строительстве. Античная цивилизация знала водяную мельницу, но она не получила распространения. Основой античной «энергетики» являлась мускульная сила рабов и тягловая сила животных, с их использованием приводилась в действие механизация Древней Греции и Рима: жернова мельниц и масличных прессов, водоподъемные колеса, колеса для подъема тяжестей и т.д. Исключение составляли военные машины.

Рабский труд и незаинтересованность подневольных работников в результатах труда препятствовали внедрению новых технологий. В таких условиях возможность применения совершенных орудий труда и достижений в области агрономических наук исключалась.

Некоторый прогресс происходил там, где нельзя было применить рабов или возникала потребность в более качественных технологиях. Среди примеров: изобретение и использование муфельных печей, стрижку овец, гончарные горны, обрушение породы и подъемные ручные вороты в горном деле и т.д.

Определенный прогресс отмечается в области литья из меди, бронзы и медных сплавов. При отливке больших статуй был изобретен способ полого литья по восковым моделям. Среди примечательных достижений античности – статуя бога Гелиоса на острове Родос, «Колосс Родосский» III в. до н.э., вошедшая в список семи чудес света. Его высота достигала около 35-38 м.

Античные мастера смогли разработать и на практике применить множество новаций, обоснованных и вычисленных с помощью научных познаний. Для примера достаточно вспомнить сооружения из списка семи чудес света: Александрийский маяк, храм Артемиды в городе Эфес. А водопровод на острове Самос проходил через горный массив, вода текла по километровому искусственному тоннелю, прорубленному сквозь толщу скалы.

Греки создали основные принципы классической архитектуры. Это создание архитектурных ордеров (ионический, дорический, коринфский), как особой организации соотношения несущих и несомых частей здания в балочно-стоечной конструкции. Римляне предпочитали коринфский, тосканский и композитный ордера. Другими достижениями греков было формирование архитектурных стилей, строительство сооружений без связующего материала, новые виды общественных зданий – театр, стадион, ипподром, библиотека, гимнасий, маяк и т.д. Новым словом в градостроительстве было использование регулярной планировки (шахматной), разработанной Гипподамом Милетским.

Ордерная система позволяла придать особую выразительность различным элементам здания. Так сложился единый общегреческий тип храмового здания в форме прямоугольной постройки, со всех сторон обнесенной колоннами. Примером дорической постройки был храм Аполлона в Коринфе, а ионической – храм Артемиды в Эфесе. Знаменитый афинский Парфенон сочетал дорический и ионический стили.

Оригинальным зданием был Александрийский маяк на о. Фарос. Он представлял собой трехступенчатую башню высотой 120 м, внутри которой был спиральный пандус, по которому наверх завозили на ослах горючие материалы. На вершине находился фонарь, где с наступлением темноты разжигался огонь.

Римляне вошли в историю как выдающиеся строители. Основные римские новшества в строительном деле: широкое применение бетона, обожженного кирпича, известкового раствора и сводчатых перекрытий. Вершиной камнетесного дела было сооружение арки и полуциркульного свода из клинчатых каменных блоков, уложенных насухо. В III в. до н.э. в строительной технике римлян было сделано важное открытие – применение пуццоланового раствора, изготовлявшегося из измельченной породы вулканического происхождения. На этом растворе изготовлялся римский бетон. Римляне научились использовать опалубку и строить бетонные сооружения, а в качестве наполнителя использовать щебень. Во II в. н.э. в Риме был построен Пантеон, «Храм всех богов», с литым бетонным куполом диаметром 43 м, он считался самым крупным в мире. Это сооружение стало образцом для архитекторов Нового времени.

Римляне заимствовали многие достижения у своих предшественников-этрусков. Этруски считались отличными металлургами, строителями, мореходами. В число таких приобретений вошли основные виды сооружений, создавших славу римским строителям. Римляне развили идеи этрусков и достигли в них максимальных успехов. Это акведуки и дороги, клоаки и триумфальные арки, форумы и амфитеатры, ирригация болотистой местности, каноны в архитектуре и скульптурном портрете.

Главенствующий принцип целесообразности, практичность и утилитарность отчетливо проявлялись в римской архитектуре. Этрусские традиции в архитектуре и изобретение бетона позволяли римлянам перейти от простых балочных перекрытий к аркам, сводам и куполам. Бурное строительство городов Римского государства, мощный приток и скопление населения в них, густая застройка улиц – все это вынудило городские власти ввести новые принципы градостроительства и позаботиться об элементарных удобствах и развлечениях обитателей Рима. К ним относятся амфитеатры, цирки, стадионы, термы (общественные бани), дворцы императоров и знати. В Риме строили многоквартирные дома – инсулы, которые могли достигать высотой 3-6 и даже 8 этажей.

Для обеспечения водой Рима было построено 11 акведуков-водопроводов, длина некоторых из них достигала 70 км. Ряд арок давал возможность строить многоярусные аркады, внутри которых находились трубы, подающие воду в город. Одним из наиболее оригинальных творений римлян в области общественных зданий были термы – римские бани, которыми пользовались не только с целью гигиены, но и для отдыха, общения. Особенностью терм были керамические трубы для обогревания стен и полов.

Римляне широко использовали цемент и бетон. Из бетона был сооружен фундамент Колизея, крепости, мосты, акведуки, портовые молы, дороги. Колизей стал одним из самых грандиозных сооружений. Здание, предназначенное для гладиаторских боев и травли животных, представляло собой эллипс окружностью 524 м. Стены Колизея имела высоту 50 м и состояли из трех ярусов.

Римские дороги вызывали восхищение у современников и последующих поколений. При их строительстве применялся бетон в сочетании с многоуровневой структурой дорожного полотна. Кроме дорог римляне знамениты своими мостами, среди которых выделяется мост через Дунай, построенный Аполлодором. Знаменитым ученым и инженером римского времени был Витрувий, I в. до н.э. Он написал «Десять книг об архитектуре» труд о строительстве и различных машинах; в этом труде содержится первое описание водяной мельницы.

Среди технических изобретений Древней Греции можно назвать новшества, которые либо опережали свое время, либо не несли практического значения в условиях рабовладения. Хотя многие из них применяются до сих пор. Такими изобретениями были автоматы Герона Александрийского. Разработанные им модели использовали силу водяного пара или сжатого воздуха. Аэропил (геронов паровой шар) является прототипом современной паровой машины. Использовать это изобретение в античной цивилизации было невозможно, поэтому и оно и многие аналогичные оставались просто игрушками. Некоторые творения Герона оказались применимы, например, автомат для продажи товаров, полезным изобретением Герона стал годометр (измеритель пути).

Ремесло и наука состоят в тесной связи, что заметно в появлении прибора, отмеряющего время. В античности были распространены солнечные часы, водяные, песочные. Античные мастера научились делать дорожные солнечные часы, а водяные получили приспособление для выполнения роли будильника.

Достижения Архимеда связаны с нуждами практики. Они использовались в машинной технике того времени, при создании блоков и лебедок, зубчатых передач, ирригационных и военных машин. Архимедом сделаны многочисленные изобретения: архимедов винт - устройство для подъема воды на более высокий уровень; различные системы рычагов, блоков и винтов для поднятия тяжестей.

Техника для войны. Древний мир немыслим без войны. Для ведения войны требовались все более сложные машины. Если говорить о прогрессе технике, то речь пойдет об артиллерии. Среди авторов древней артиллерии наиболее важными являются механики Филон и Герон.

Военными машинами, устроенными по типу лука, были самострелы (аналог арбалета), которые назывались гастрафет. На этой основе были созданы первые образцы более крупных метательных машин катапульты. Они носят различные названия: оксибел (орудие для метания стрел или катапульта) или литобол (орудие для метания каменных ядер или баллиста). Еще более совершенные орудия были придуманы Филоном: халкотон, в котором для натягивания лука использовалась упругость кованых бронзовых пружин; полибол, основанный на использовании упругости при кручении, мог перезаряжаться сам.

Кроме метательных машин, военная техника включала разнообразные приспособления для штурма городов и разрушения крепостных укреплений: осадные башни, тараны, буравы, подвижные галереи, механизированные штурмовые лестницы, подъемные мосты. Для осады крепостей греческий механик Деметрий Полиоркет изобрел большое количество осадных сооружений. Среди них были укрытия от метательных снарядов – черепахи для земляных работ, черепахи с таранами. Значительным сооружением была гелепола – движущаяся башня пирамидальной формы высотой до 35 м на восьми больших колесах.

Греки были морской цивилизацией, главенство их на море обычно связывают с изобретением нового типа боевого корабля – триеры. Большая скорость и маневренность позволяли триере эффективно использовать свое главное оружие – таран, который пробивал днище кораблей противника. Триера позволила грекам завоевать господство на Средиземном море и овладеть морской торговлей. Появление баллисты изменило тактику не только сухопутных битв, но и морских. Если раньше главным оружием триеры был таран, то теперь стали строить корабли с башнями, на которые устанавливали баллисты.

Военным изобретением иного характера стала македонская фаланга. Начиная с отца Александра Македонского, его воины имели длинные копья (до 6 м) и строились плотными рядами, создавая частокол стальных наконечников. Новое построение и тактика привели к великим завоеваниям македонских царей, а с точки зрения истории – к началу новой эпохи эллинизма.

Новый центр античной цивилизации, Древний Рим, начал активную военную экспансию, постоянно модернизируя оружие, тактику, военные приспособления. В итоге, римляне создали лучшую армию Древнего Мира, что породило волну завоеваний и появление «Римского мира» или Римской империи.

В этот период появилось много важных изобретений и открытий, которые применялись в строительстве, мореходстве и быту. Они не носили революционного характера, однако способствовали постепенному развитию материальной и технической мысли человечества. Основные технические достижения античности были сосредоточены на орудиях войны, но и в мирных целях, особенно в сельском хозяйстве было сделано немало открытий.

Достижения античной материальной культуры стали основой технического развития Западной Европы в эпоху средневековья и последующие периоды.

История античной науки условно делится на три периода:

Первый период - ранняя греческая наука, получившая у древних авторов наименованиенауки «о природе» («натурофилософия»). Эта «наука» была нерасчлененной, спекулятивной дисциплиной, основной проблемой которой была проблемапроисхождения и устройства мира, рассматривавшегося как единое целое. До конца V в. до н.э. наука быланеотделима от философии. Высшей точкой развития и завершающей стадией науки «о природе» быланаучно-философская система Аристотеля.

Второй период - эллинистическая наука. Это периоддифференциации наук. Процесс дисциплинарного дробления единой науки начался в V в. до н.э., когда одновременно с разработкойметода дедукции произошло обособление математики. РаботыЕвдокса положили начало научнойастрономии.

В трудах Аристотеля и его учеников уже можно усмотреть появлениелогики, зоологии, эмбриологии, психологии, ботаники, минералогии, географии, музыкальнойакустики, не считаягуманитарных дисциплин, таких какэтика, поэтика и другие, которые не были частью науки «о природе». Позже приобретают самостоятельное значение новые дисциплиныгеометрическая оптика (в частности, катоптрика, т.е. наука о зеркалах),механика (статика и ее приложения),гидростатика. Расцвет эллинистической науки был одной из форм расцвета эллинистической культуры в целом и обусловлен творческими достижениями таких ученых, какЕвклид, Архимед, Эратосфен, Аполлоний Пергский, Гиппарх и др. Именно в III-II вв. до н.э.античная наука по своему духу и устремлениям ближе всего подошла к наукеНового времени.

Третий период - периодупадка античной науки. Хотя к этому времени относятся работыПтолемея, Диофена, Галена и др., все же в первые века н.э. наблюдается усиление регрессивных тенденций, связанных с ростомиррационализма, появлениемоккультных дисциплин, возрождением попытоксинкретичного объединения науки и философии.

Особенностью зарождения и развития античной науки была новая система государственного устройства – афинская демократия. В греческих судах каждый защищал себя сам; на этих процессах истцы и ответчики изощрялись в ораторском искусстве. Этому искусству стали учить в частных школах мудрецы-«софисты». Главой софистов был Протагор; он утверждал, что «человек есть мера всех вещей» и что истина – это то, что кажется большинству (т.е. большинству судей). Ученик Протагора Перикл стал первым политиком, освоившим ораторское искусство; благодаря этому искусству он 30 лет правил Афинами. От софистов и Протагора пошла греческая философия; в значительной степени она сводилась к умозрительным рассуждениям. Тем не менее, в рассуждениях философов встречались и рациональные мысли. Сократ первым поставил вопрос об объективности знания; он подвергал сомнению привычные истины и утверждал: «я знаю только то, что ничего не знаю». Анаксагор пошел дальше – он отрицал существование богов и пытался создать свою картину мира, утверждал, что тела состоят из мельчайших частичек. Демокрит назвал эти частички атомами и попробовал применить бесконечно малые величины в математических вычислениях; он получил формулу для объема конуса. Афиняне были возмущены попытками отрицать богов, Протагор и Анаксагор были изгнаны из Афин, а Сократ по приговору суда был вынужден испить чашу с ядом.

Учеником Сократа был философ Платон (427-347 гг. до н.э.). Платон верил в существование души и в переселение душ после смерти. Платон был основателем социологии, науки об обществе и государстве. Он предложил проект идеального государства, которым управляет каста философов наподобие египетских жрецов. Опорой философов являются воины, «стражи», похожие на спартанцев, они живут одной общиной и имеют все общее – в том числе жен. Платон утверждал, что его идеальное государство существовало в Атлантиде, стране расположенной на Западе, на затонувшем впоследствии материке. Конечно, это была «научная фантастика». Платон и его ученик Дион пытались создать идеальное государства в Сиракузах, на Сицилии; этот политический эксперимент привел к гражданской войне и разорению Сиракуз.

Исследования Платона продолжал Аристотель, он написал трактат «Политика», который содержал сравнительный анализ общественного строя большинства известных тогда государств. Аристотель выдвинул ряд положений, принятых современной социологией; он утверждал, что ведущим фактором общественного развития является рост населения; перенаселение порождает голод, восстания, гражданские войны и установление «тирании». Цель «тиранов» – установление «справедливости» и передел земли. Аристотель известен как основатель биологии; он описывал и систематизировал животных – так же как описывал и систематизировал государства; таких исследователей называют «систематиками».

Александр Македонский проявлял интерес к наукам и помог Аристотелю создать первое высшее учебное заведение, «Ликей»; он взял с собой в поход племянника Аристотеля Каллисфена. Каллисфен описывал природу завоеванных стран, измерял широту местности, посылал Аристотелю чучела животных и гербарии. После смерти Александра роль покровителя наук взял на себя его друг Птолемей. При разделе империи Александра Птолемею достался Египет, и он основал в Александрии по образцу Ликея новый научный центр, Мусей. Здания Мусея располагались среди парка, там были аудитории для студентов, дома преподавателей, обсерватория, ботанический сад, и знаменитая библиотека – в ней насчитывалось 700 тысяч рукописей. Преподаватели Мусея получали жалование; среди них были не только философы и механики, но и поэты, восточные мудрецы, переводившие на греческий язык египетские и вавилонские трактаты. Египетский жрец Манефон был автором трактата «Египетские древности», а вавилонский жрец Бероэс написал «Вавилонские древности»; 72 еврейских мудреца перевели на греческий язык Библию.

Мусей был первым научным центром, финансируемым государством. По сути, день рождения Мусея был днем рождения античной науки. Главой Мусея был географ Эратосфен, сумевший, измеряя широту в различных пунктах, вычислить длину меридиана; таким образом, было доказано, что Земля – шар. Евклид создал геометрию, которую сейчас проходят в школах. Он положил в основу науки строгие доказательства; когда Птолемей попросил обойтись без доказательств, Евклид ответил: «Для царей нет особых путей в математике».

В Мусейоне обсуждалась гипотеза Аристарха Самосского о том, что Земля вращается по окружности вокруг Солнца оказалось, что это противоречит наблюдениям (Земля движется не по кругу, а по эллипсу). В результате ученые во главе с Клавдием Птолемеем (II в. н.э.) создали теорию эпициклов: Земля находится в центре Вселенной, вокруг располагаются прозрачные сферы, объемлющие одна другую; вместе с этими сферами по сложным эпициклам движутся Солнце и планеты. За последней сферой неподвижных звезд Птолемей поместил «жилище блаженных». Труд Птолемея «Великое математическое построение астрономии в 13 книгах» был главным руководством по астрономии до Нового времени. Птолемей создал научную географию и дал координаты 8 тысяч различных географических пунктов, это «Руководство по географии» использовалось европейцами до времен Колумба.

Витрувий в своей работе использовал труды ученых из Александрийского Мусея, который функционировал до конца IV в. н.э. В 391 г. н.э. Мусей был разрушен во время религиозного погрома – христиане обвиняли ученых в поклонении языческим богам.

Христианство претендовало на роль монопольной идеологии, оно боролось с другими религиями и богами, преследуя всякое инакомыслие. Никто не имел права усомниться в том, что написано в Библии: Земля лежит посреди Океана и накрыта как шатром, семью куполами неба, что в центр