Электронная заслонка (дроссель) принцип работы и зависимость от других систем

Для чего нужны дроссели и их цветовая маркировка понятие и принцип действия

Дроссель – это катушка индуктивности, которая обладает большим сопротивлением по отношению к переменному току. В схеме постоянного тока дроссель оказывает гораздо меньшее сопротивление. Название электрического компонента имеет немецкое происхождение – Drossel, что означает сглаживание, торможение.

Конструкция

Принципиальная схема дросселя представляет собой намотанный провод на ферромагнитный сердечник. Отсюда становится понятно, что такое дроссель. Электроэлемент напоминает трансформатор, но имеет одну обмотку.

Принцип работы

Принцип работы электрического дросселя заключается в сдерживании резкого нарастания тока и сглаживании линии падения напряжения. Как работает электрический дроссель, видно на примере люминесцентного светильника. Чтобы газ в колбе не сгорел, а постепенно разогревался, катушка постепенно доводит ток до номинального значения.

Входящий ток «тратит» свою силу на индукцию магнитного поля вокруг катушки. Когда магнитный поток достигнет своего максимума, ток начнёт проходить беспрепятственно через катушку.

Важно! Дроссели встречаются во всех электрических схемах. Сглаживание первоначального электрического напряжения защищает радио,- и электрические компоненты от критических перегрузок.

Устройство индуктивной катушки

Прибор подавляет происходящие в переменном токе пульсации. В электрических цепях проходит электричество разной частоты, поэтому для подавления помех применяют низкочастотные и высокочастотные катушки.

Низкочастотные устройства

Катушки имеют большие размеры. Провод в них намотан вокруг сердечника из трансформаторной стали. В аппаратуре, питание которой обеспечивается мощным напряжением, устанавливают дроссельные блоки низкой частоты. Индуктивные катушки в каскадном исполнении противостоят резким изменениям характеристик тока.

Что такое электрическое дросселирование, знает каждый электрик. На промышленных предприятиях без этого не обходится ни одно электрооборудование.

Высокочастотные элементы

Высокочастотный электронный дроссель гораздо меньше низкочастотного собрата. Катушка может быть выполнена из однослойной или многослойной намотки. Для высокочастотных дросселей применяют ферритовые сердечники или стержни из магнитного диэлектрического материала.

Область применения

Катушки индуктивности используют, как:

  • токоограничители;
  • катушки насыщения;
  • фильтры сглаживания;
  • магнитные усилители (МУ);
  • резонансные контуры;
  • электронный дроссель в радио,- и компьютерных схемах.

Токоограничители

Для чего нужны дроссели в качестве токоограничителей, можно узнать из следующего списка:

  1. Катушки без сердечников имеют маленькое сопротивление, поэтому они эффективно ограничивают величину тока короткого замыкания. Даже малейшее уменьшение мощности дуги короткого замыкания имеет большое значение.
  2. Во время пуска мощных электродвигателей включаются в работу катушки индуктивности. После набора максимальных оборотов аппаратом катушка отключается пусковым устройством.
  3. В лампах дневного света электрические дроссели препятствуют резкому включению тока максимальной величины. В результате происходит постепенный разогрев ртути и переход её в парообразное состояние. У ламп ДРЛ 250 дроссели находятся внутри колбы. Дроссели ламп ДНАТ находятся внутри кожуха отдельно от колбы.

Обратите внимание! Аббревиатура ДРЛ означает Дуговая Ртутная Лампа. ДНАТ – Дуговая Натриевая Трубка.

Катушки насыщения

После насыщения магнитного поля величина сопротивления катушки перестаёт расти. Ранее катушки насыщения составляли основу стабилизаторов напряжения. Сегодня их заменили электронные системы.

Фильтры сглаживания

Что это такое в электронике дроссель? Это фильтры сглаживания, которые выпрямляют линию пульсации переменного напряжения. В результате обеспечивается стабильность работы электронной аппаратуры. Такой фильтр выглядит в виде бочонка на USB-кабеле. Внутри него находится одновитковая катушка. В электронных платах используют дроссели марки r68.

Магнитные усилители (МУ)

Они были включены в систему управления электромоторов. Магнитная индукция в сердечнике насыщалась намагничиванием стали сердечника. В пускателе использовалось сразу несколько обмоток. Сегодня вместо магнитных пускателей применяют тиристорные системы.

Резонансные контуры

Резонансную схему применяют в тюнерах. Индуктивная катушка параллельно с конденсатором объединена в единую систему, что составляет резонансный контур. Схема обеспечивает малое сопротивление с фиксированной частотой.

Электронный дроссель в радио,- и компьютерных схемах

Катушки индуктивности типа r68 применяют в монтажных платах с целью выделения токов определённой частоты. Также они исполняют роль защиты, как от внешних, так и внутренних помех частей схемы.

Основные характеристики

К основным характеристикам относятся следующие показатели:

  • величина индукции;
  • потеря сопротивления;
  • потери сердечника;
  • потери из-за вихревых токов;
  • паразитная ёмкость;
  • ТКИ (температурный коэффициент индуктивности).

Дополнительная информация. Характеристики катушек индуктивности нужны для расчёта новых моделей устройств. Параметры также используются при проектировании печатных плат.

Разновидности дросселей

Их различают по назначению и способу установки. Однофазные катушки индуктивности используют в лампах дневного света, питающихся от сети 220 в. Трёхфазные устройства работают в схемах питания напряжением 380 вольт для дуговых ртутных ламп и дуговых натриевых трубок.

Встраиваемые модели монтируют в корпусе прибора. В этом случае устройства защищены от пыли и влаги. В закрытом виде устройства помещены в специальных коробах.

Электронные аналоги

На смену индукционным катушкам в их традиционном исполнении пришли полупроводниковые радиодетали: транзисторы, тиристоры.

Следует заметить. Для высокочастотных приборов транзисторы не используют.

Маркировка малогабаритных устройств

Устройства для электронных плат имеют размеры не более 2-3 см. Нанести читаемую маркировку в цифровом или буквенном обозначении практически невозможно. Для этого применяют цветовую маркировку электронных дросселей. Дроссели на схемах изображают в виде спирали с параллельной чертой.

На цилиндрический корпус радиодетали наносят несколько цветных колец. Первые две полосы (слева направо) означают величину индуктивности, измеряемую в мГенри. Третья полоса указывает множитель, на который нужно умножить число индуктивности. Четвёртое кольцо выражает допустимое отклонение в % от номинала. Если его не окажется на корпусе детали, то принято считать допуск в пределах 20%.

Читайте также:  Правила перевозки детей в автомобиле 3 изменения ПДД в 2020 году

Например, цвета колец расположились в следующем порядке: коричневый, жёлтый, оранжевый и серебристый. Это означает величину индуктивности 14 mH, где допуск отклонения составляет 10%.

Технический прогресс не стоит на месте. С каждым годом появляются новые аналоги устаревших моделей. Разработка новых технологий во всех сферах деятельности человека требует совершенствования радиодеталей, в том числе дросселей.

Видео

Принцип работы и обозначение электрических дросселей на схемах

Дросселем называется катушка индуктивности определенной конструкции и номинала, предназначенная для установки в электротехнических и электронных схемах. Дроссель электрический требуется отличать от аналога, используемого в электронных устройствах с учетом их конструктивных особенностей. Для понимания, в чем состоят различия этих двух изделий, придется ознакомиться с принципом работы и существующими разновидностями.

Принцип работы

Принцип работы дросселей в электрической схеме можно объяснить так:

  • при протекании переменного тока через индуктивный элемент скорость его нарастания замедляется, что приводит к аккумулированию энергии в магнитном поле катушки;
  • объясняется это действием закона Ленца, согласно которому ток в индуктивности не может изменяться мгновенно;
  • нарушение этого правила привело бы к недопустимому нарастанию напряжения, что физически невозможно.

Другой отличительной особенностью, поясняющей принцип работы индуктивности, является эффект самоиндукции, теоретически обоснованный Фарадеем. На практике он проявляется как наведение в катушке собственной ЭДС, имеющей противоположную полярность. За счет этого эффекта через индуктивность начинает течь ток, препятствующий нарастанию вызвавшего его полевого образования.

Указанное свойство позволяет применять индуктивные элементы в электротехнике для сглаживания низкочастотных пульсаций. Для них индуктивность представляется большим сопротивлением.

Использование в других технических областях (в высокочастотных устройствах, например) дроссель обеспечивает развязку основной электронной схемы от вспомогательных (низкочастотных) цепей.

Технические характеристики

Основным техническим параметром дросселя в электротехнике и электронике, полностью характеризующим его функциональность, является величина индуктивности. Этим он напоминает обычную катушку, применяемую в различных электрических схемах. И в том и другом случае за единицу измерения принимается Генри, обозначаемый как Гн.

Еще один параметр, описывающий поведение дросселя в различных цепях – его электрическое сопротивление, измеряемое в Омах. При желании его всегда удается проверить посредством обычного тестера (мультиметра). Для полноты описания работы этого элемента потребуется добавить такие показатели:

  • допустимое (предельное) напряжение;
  • номинальный ток подмагничивания;
  • добротность образуемого катушкой контура.

Указанные характеристики дросселей позволяют разнообразить их ассортимент и использовать для решения самых различных инженерных задач.

Разновидности дросселей

По виду электрических цепей, в которых устанавливаются дроссельные элементы, классификация следующая:

  • низкочастотные индуктивности;
  • высокочастотные катушки;
  • дроссели в цепях постоянного тока.

Низкочастотные элементы внешне напоминают обычный трансформатор, у которого имеется всего лишь одна обмотка. Их катушка навита на пластиковом каркасе с размещенным внутри сердечником, изготовленным из трансформаторной стали.

Стальные пластины надежно изолированы одна от другой, что позволяет снизить уровень вихревых токов.

Дроссельные НЧ катушки обычно имеют большую индуктивность (более 1 Гн) и препятствуют прохождению токов сетевых частот 50-60 Герц через участки цепей, где они установлены.

Еще одна разновидность индуктивных изделий – высокочастотные дроссели, витки которых навиваются на ферритовом или стальном сердечнике. Существуют разновидности ВЧ изделий, которые работают без ферромагнитных оснований, а провода в них наматываются просто на пластмассовый каркас. При секционной намотке, применяемой в схемах среднечастотного диапазона, витки провода распределяются по отдельным секциям катушки.

Электротехнические изделия с ферромагнитным сердечником имеют меньшие габариты, чем простые дроссели той же индуктивности. Для работы на высоких частотах применяются сердечники ферритовые или из диэлектрических составов, отличающихся малой собственной емкостью. Такие дроссели используются в довольно широком диапазоне частот.

Некоторые из них изготавливаются в виде толстой витой проволоки, совсем не имеющей каркаса.

Дроссель постоянного тока в основном применяется для сглаживания пульсаций, появляющихся после его выпрямления в специальных схемах.

Применение индуктивных элементов и их графическое обозначение

Электрические дроссели, работающие в цепях переменного тока, традиционно применяются в следующих случаях:

  • для развязки вторичных цепей импульсных источников питания;
  • в обратноходовых преобразователях или бустерах;
  • в балластных схемах люминесцентных ламп, обеспечивающих быстрый запуск;
  • для запуска электрических двигателей.

В последнем случае они используются в качестве ограничителей пусковых и тормозных токов.

Электротехнические изделия, устанавливаемые в электрических приводах мощностью до 30 кВт, по своему виду напоминают классический трехфазный трансформатор.

Так называемые дроссели насыщения используются в типовых обратноходовых стабилизаторах напряжения, а также в феррорезонансных преобразователях и магнитных усилителях. В последнем случае возможность намагничивания сердечника позволяет изменять индуктивное сопротивление действующих цепей в широких пределах. Сглаживающие дроссели применяются для снижения уровня пульсаций в выпрямительных цепях.

Источники питания с такими элементами до сих пор встречаются в электротехнической практике. Для запуска люминесцентных ламп все чаще используется «электронный» балласт, постепенно вытесняющий намоточные изделия. Его применение объясняется следующими преимуществами:

  • низкий вес;
  • эксплуатационная надежность;
  • отсутствие характерного для обычных дросселей гудения.

Для обозначения дросселя на электротехнических и электронных схемах используются значки, представляющие собой отрезок витого проводника. Для катушек с сердечником внутри намотки дополнительно ставится черточка, а в бескаркасном варианте исполнения она отсутствует.

Что такое дроссель, его применение и принцип работы

Что такое дроссель? Как отличить от резистора или трансформатора? Как правильно подключить и зачем вообще это делать? Всё самое интересное далее в статье!

Дроссель в электрике

Это особый вид катушек индуктивности. Его особенность заключается в том, что он может удерживать в течение некоторого времени токи из определённого диапазона частот. Механизм срабатывания действует быстро, что позволяет пропускать только нужный сигнал.

Это предотвращает ситуацию, при которой напряжении в сети резко меняется. Чтобы повысить уровень безопасности и стабильность работы, дроссель ставят в цепь обязательно. Разберем пропускной диапазон, виды, принцип работы более подробно.

Для чего нужен дроссель

Дроссель используется вместо последовательного резистора, потому что обеспечивает лучшую фильтрацию (меньше остаточной пульсации переменного тока на источнике питания, что означает меньшее гудение на выходе усилителя) и меньшее падение напряжения. «Идеальный» индуктор будет иметь нулевое сопротивление постоянному току. При использовании резистора большего размера, вы быстро достигаете точки, где падение напряжения возрастает до пиковых величин, и, кроме того, «провал» питания становится значительным, потому что разность токов между полной выходной мощностью и холостым ходом может быть немалой, особенно в усилителе класса AB.

Читайте также:  Зеленая карта 2020 где дешевле и зачем нужна

Существует две распространенные конфигурации источника питания: конденсаторный вход и дроссельный вход. Входной фильтр конденсатора не обязательно должен иметь дроссель, но для дополнительной фильтрации тот необходим. Источник питания дросселя по определению обязан оснащаться дросселем.

На входе конденсатора будет конденсатор фильтра, следующий непосредственно за выпрямителем. Тогда он может иметь или не иметь второго фильтра, состоящего из последовательного резистора или дросселя, за которым следует другой конденсатор. Сеть «колпачок – индуктор – колпачок» обычно называется сетью «пи-фильтр». Преимущество входного фильтра конденсатора заключается в более высоком выходном напряжении, но он имеет более низкое регулирование напряжения, чем входной фильтр дросселя.

Источник питания дросселя будет иметь дроссель, следующий сразу за выпрямителем. Основное преимущество входного питания дросселя – лучшее регулирование напряжения, но за счет гораздо более низкого выходного напряжения. Входной фильтр дросселя должен иметь определенный минимальный ток, протекающий через него для поддержания регулирования.

Пример:

Разница напряжений между двумя типами фильтров может быть довольно большой. Например, предположим, что у вас есть трансформатор 300-0-300 и двухполупериодный выпрямитель.

Если вы используете конденсаторный входной фильтр, вы получите максимальное напряжение постоянного тока без нагрузки в 424 вольт, которое снизится до напряжения, зависящего от тока нагрузки и сопротивления вторичных обмоток.

Если вы используете тот же трансформатор с входным фильтром дросселя, пиковое выходное напряжение постоянного тока будет составлять 270 В и будет гораздо более строго регулироваться, чем входной фильтр конденсатора (меньше перемен напряжения питания с изменениями тока нагрузки).

Как работает дроссель

Во всех переключающих регуляторах индуктор используется в качестве устройства накопления энергии. Когда полупроводниковый переключатель включен, ток в индукторе увеличивается и энергия накапливается. Когда выключатель выключается, эта энергия высвобождается в нагрузку. Количество накопленной энергии определяется как Энергия = ½L·I 2 (Дж)

Где L – индуктивность в Генри, а I – пиковое значение тока индуктора.

Величина, на которую ток в катушке индуктивности изменяется во время цикла переключения, называется пульсирующим током и определяется следующим уравнением:

Где V l – напряжение на катушке индуктивности, di – ток пульсации, а DT – длительность, в течение которой подается напряжение. Отсюда видно, что значение пульсационного тока зависит от значения индуктивности.

Для понижающего преобразователя выбор правильного значения индуктивности важен для получения приемлемых размеров индуктивности выходного конденсатора и достаточно низкой пульсации выходного напряжения.

Ток индуктора состоит из компонентов переменного и постоянного тока. Поскольку компонент переменного тока является высокочастотным, он будет проходить через выходной конденсатор, который обеспечивает низкий ВЧ-импеданс. Это создаст пульсации напряжения из-за эквивалентного последовательного сопротивления конденсатора (ESR), которое появляется на выходе понижающего преобразователя. Это пульсирующее напряжение должно быть достаточно низким, чтобы не влиять на работу цепи, которую поставляет регулятор.

Выбор правильного пульсирующего тока также оказывает влияние на размер индуктора и выходного конденсатора. Этот конденсатор должен иметь достаточно высокий номинальный ток пульсации, иначе он перегреется и высохнет. Чтобы получить хороший компромисс между размерами индуктора и конденсатора, вы должны выбрать значение пульсационного тока от 10 % до 30 % от максимального тока нагрузки. Это также подразумевает, что ток в катушке индуктивности будет непрерывным для выходных токов, превышающих 5–15 % от полной нагрузки.

Вы можете использовать индукторы понижающего преобразователя в непрерывном или прерывистом режиме. Это означает, что ток индуктора может течь непрерывно или падать до нуля во время цикла переключения (прерывистый). Однако работа в прерывистом режиме не рекомендуется, так как это делает конструкцию преобразователя более сложной. Выбор пульсирующего тока индуктивности менее чем в два раза ниже минимальной нагрузки обеспечивает работу в непрерывном режиме.

При подборе индуктора для понижающего преобразователя, как и для всех переключающих регуляторов, вам необходимо определить или рассчитать следующие параметры:

  • максимальное входное напряжение;
  • выходное напряжение;
  • частоту переключения;
  • максимальный ток пульсации;
  • рабочий цикл.

Например, для понижающего преобразователя выберем частоту переключения 200 кГц, диапазон входного напряжения 3,3 В ± 0,3 В и выход 1,8 В при 1,5 А с минимальной нагрузкой 300 мА.

Для входного напряжения 3,6 В рабочий цикл будет:

Где V o – выходное напряжение, а V i – входное напряжение.

Напряжение на индуктивности:

V l = – V o = –1,8 В, когда переключатель выключен.

При выборе пульсирующего тока 600 мА необходимая индуктивность: L = V l. Dt / di = (1,8 × 0,5 / 200 × 10 3 ) / 0,6

Чтобы разрешить некоторый запас, вы должны выбрать значение 10 мкГн. Это дает номинальный пиковый ток пульсации 450 мА. В готовом проекте это можно рассматривать как выходное пульсирующее напряжение 0,45 × ESR выходного конденсатора.

Как измерить индуктивность дросселя мультиметром

Любое проводящее тело обладает определенной конечной индуктивностью. Эта индуктивность является внутренним свойством проводящего тела, и она всегда одинакова независимо от того, находится ли этот проводник или устройство под напряжением в электрической цепи или хранится на полке склада.

Индуктивность прямолинейного сегмента может быть значительно увеличена путем намотки его в виде спиральной катушки, после чего магнитные поля, установленные вокруг соседних витков, объединяются, создавая одно более сильное магнитное поле. Индуктивность катушки зависит от квадрата суммы числа витков.

Индуктивность катушки также значительно увеличивается, если та построена вокруг сердечника, который состоит из материала, имеющего высокую проницаемость для магнитного потока. (Поток – это произведение среднего магнитного поля на величину перпендикулярной области, которую он пересекает. Поток в магнитной цепи аналогичен току в электрической цепи.) Это ситуация в силовых трансформаторах, принадлежащих коммунальным предприятиям, и других катушках, предназначенных для работы на 50 или 60 Гц. Индуктивные эффекты более выражены на более высоких частотах, поэтому для ВЧ-индуктора обычно достаточно воздушного сердечника.

Одно из определяющих качеств катушки состоит в том, что при снятии приложенного напряжения, прерывая ток, магнитное поле разрушается, и электрическая энергия, ранее использованная для создания магнитного поля, внезапно возвращается в цепь. Это просто проявление того факта, что магнитное поле и проводник, движущиеся относительно друг друга, вызывают поток тока в проводнике.

Скорость изменения тока в катушке индуктивности пропорциональна приложенному к ней напряжению, определяемому известным уравнением:

  • L – индуктивность в Генри;
  • V – напряжение, I – ток;
  • t – время.
Читайте также:  Инновационный сити-гайд что делать, куда идти, где останавливаться и с кем знакомиться в Тель-Авиве

Подобно конденсатору и в отличие от резистора полное сопротивление индуктора зависит от частоты. Импеданс – это векторная сумма сопротивления (когда и если в цепи есть резистор или эквивалент) и индуктивного или емкостного сопротивления.

В конденсаторе более высокая частота соответствует более низкому емкостному сопротивлению. В индукторе более высокая частота соответствует более высокому индуктивному сопротивлению.

Катушка не оказывает противодействия потоку постоянного тока, за исключением:

  • небольшого сопротивления из-за большой емкости провода;
  • мгновенного индуктивного сопротивления при первом включении катушки из-за работы, необходимой для установления магнитного поля. (В течение времени нарастания постоянный ток по существу переменный.)

Уравнение для емкостного сопротивления:

Где X C = емкостное сопротивление в омах; f = частота в герцах; C = емкость.

Уравнение для индуктивного сопротивления:

Где X L = индуктивное сопротивление в омах; f = частота в герцах; L = индуктивность.

Эти уравнения «симметричны». Один является зеркальным отражением другого, различие заключается в роли, которую играет частота. В емкостном сопротивлении f находится в знаменателе, а в индуктивном сопротивлении – в числителе. Емкостное и индуктивное реактивное сопротивление, а также общий импеданс выражены в омах как сопротивление постоянному току, и они полностью соответствуют закону Ома при том понимании, что эти свойства меняются с частотой.

Как обозначается дроссель на схеме

Условные обозначения:

Из чего состоит дроссель

  • катушка;
  • провод, намотанный на сердечник;
  • магнитопровод.

Есть схожесть с трансформатором, но слой обмотки всего один. Такая конструкция помогает стабилизировать сеть, а также исключить шанс резкого скачка напряжения.

Как подключить дроссель

Схема подключения очень простая и представляет собой цепь последовательно соединённого дросселя и самого устройства ДРЛ 250. Подключение идёт через сеть 220 вольт и работает при обычной частоте. Поэтому их без труда можно поставить в домашнюю сеть. Дроссель работает как стабилизатор и корректировщик напряжения.

Как отличить резистор от дросселя

По внешнему виду: от резисторов отличаются обычно толщиной (дроссели толще), от конденсаторов – неправильной формой «капельки».

Более точный способ – сопротивление. У дросселя оно почти нулевое.

Таблица с маркировкой:

Серебряный 0,01 10
Золотой 0,1 5 %
Черный 1 20 %
Коричневый 1 1 10
Красный 2 2 100
Оранжевый 3 3 1000
Желтый 4 4
Зеленый 5 5
Голубой 6 6
Фиолетовый 7 7
Серый 8 8
Белый 9 9
1-я цифра 2-я цифра Множитель Допуск

Чем отличается дроссель от трансформатора

Трансформатор оснащён несколькими мотками и меняет величину напряжения. Дроссель имеет одну обмотку и уравнивает пульсации постоянного тока (не пропускает переменную часть дальше в сеть).

Как рассчитать дроссель на ферритовом кольце

Индукторы обычно указываются с двумя номиналами тока: непрерывный (Irms) и пиковый (Isat). Irms обычно указывается как постоянный ток, вызывающий повышение температуры индуктора на 40 °C. Isat – это пиковый ток, который вызывает определенный спад индуктивности – определяется как процентное уменьшение от значения разомкнутой цепи и может варьироваться от 5 % до 50 %. Эти номиналы тока являются руководством к характеристикам индуктора. Фактический максимальный рабочий ток будет зависеть от применения. Учитывая это, необходимо проверить ряд факторов, чтобы обеспечить правильный выбор индуктора.

Во-первых, важно посмотреть, как индуктивность «падает» с увеличением тока. Для таких материалов, как железный порошок, порошок пермаллоя молибдена (MPP), сендуст и аморфный порошок, которые используют распределенный воздушный зазор, спад индуктивности начинается при очень низких уровнях тока и продолжается почти линейным образом при увеличении тока. Если используется ферритовый материал, любое постепенное изменение индуктивности затопляется большим зазором, который необходимо ввести для накопления энергии. В результате индуктивность резко падает в точке насыщения всего ядра. До достижения этой точки индуктивность остается практически постоянной.

Для материалов с ферритовым сердечником пиковый ток обычно указывается для снижения индуктивности от 10 % до 30 % от значения разомкнутой цепи. Работа при более высоких уровнях тока не рекомендуется, так как индуктивность быстро упадет до низкого уровня. Однако для порошкообразных материалов максимальный ток может быть задан при любом спаде до 50 % при работе за пределами возможной, если индуктор не перегрелся.

Как рассчитать дроссель для импульсного блока питания

Высококачественные мультиметры часто включают емкостный режим. Чтобы сделать это измерение, просто исследуйте выводы тестируемого устройства. В целях безопасности и точности может потребоваться разрядка устройства с высокой емкостью, такого как электролитический конденсатор, с использованием разумного сопротивления в течение соответствующего промежутка времени. Шунтирование с помощью отвертки не является хорошей практикой, потому что электролит может быть пробит из-за сильного тока, не говоря уже о вспышке дуги в больших единицах. После разряда проверьте, измерив напряжение.

Можно ожидать, что конденсаторы, протестированные с помощью мультиметра в емкостном режиме, будут показывать значения ниже на целых 10 %. Эта точность достаточна для многих применений, таких как цепь запуска для электродвигателя или для фильтрации источника питания. Большая точность достигается путем проведения динамического теста. Одной из стратегий точного измерения является создание схемы, преобразующей емкость в частоту, которую затем можно определить с помощью счетчика.

Для измерения индуктивности устройства, собственной индуктивности цепи или более распространенной распределенной индуктивности прибор LCR является предпочтительным инструментом. Он подвергает тестируемое устройство (надлежащим образом разряжается и изолируется от любых окружающих цепей, которые могут запитать его или создать нерелевантный параллельный импеданс) переменному напряжению известной частоты, обычно одно среднеквадратичное значение на один килогерц. Измеритель одновременно измеряет напряжение и ток через устройство. Из соотношения этих величин он алгебраически рассчитывает импеданс.

Впоследствии усовершенствованные измерители фиксируют фазовый угол между приложенным напряжением и результирующим током. Они используют эту информацию для отображения эквивалентной емкости, индуктивности и сопротивления рассматриваемого устройства. Счетчик работает в предположении, что емкость и индуктивность, которые он обнаруживает, существуют в параллельной или последовательной конфигурации.

Конденсаторы имеют определенное количество непреднамеренной индуктивности и сопротивления в результате их выводов и пластин. Точно так же индукторы имеют некоторое сопротивление из-за своих выводов, и они обладают определенной емкостью, потому что их клеммы приравниваются к пластинам. Аналогично резисторы, а также полупроводники на высоких частотах приобретают емкостные и индуктивные качества.

Как правило, счетчик предполагает, что подразумеваемые устройства включены последовательно, когда он выполняет измерения LR. Аналогично предполагается, что они параллельны, когда проводятся измерения CR, из-за последовательной геометрии катушки и параллельной геометрии конденсатора.

Ссылка на основную публикацию
Электрический котел для отопления квартиры
Электрический котел для отопления дома – как выбрать электрокотел Бытовые электрокотлы удобны в эксплуатации, эффективны и недороги по сравнению с...
Щётки на Поло седан; Про щётки
Щетки стеклоочистителя на Фольксваген Поло седан - Автомобильные стеклоочистители Всё о щетках автомобильных стеклоочистителей, дворниках Ищите дворники на Поло седан?...
Щетки на Школа Рапид размеры дворников, как снять; Taxi Bolt
Размер щеток стеклоочистителя авео т300 С завода на Авео устанавливают следующие размеры щеток стеклоочистителя: Левая (водительская) — 650 миллиметров или...
Электрический насос для автомобиля
Насос ситемы охлаждения (помпа) устройство и принцип работы Для обеспечения циркуляции жидкости в системе охлаждения двигателя автомобиля применяется центробежный насос,...
Adblock detector