Гальваническая развязка — применение и принцип действия

Гальваническая развязка 1

Гальваническая развязка это один из способов защитить работающий с электрическим оборудованием персонал. Такая развязка является основной мерой создания безопасности, которую необходимо рассматривать наровне с другими мерами безопасности: ограничение напряжения, заземление и зануление.

Емкостная гальваническая развязка

Такой вид развязки электрических цепей является еще одной разновидностью развязки цепей. При этом между цепями нет связи по току, земле и другим элементам.

В развязке, выполненной емкостями, для передачи данных применяется переменное электрическое поле. Между пластинами конденсаторов находится диэлектрик, который является изолятором между цепями.

Электрические параметры такой развязки определяют свойства диэлектрика, расстояние между обкладками и их размер. Достоинством емкостной гальванической изоляции является повышенная энергетическая эффективность, небольшие размеры устройства, способность передачи электроэнергии и невосприимчивость к внешним электромагнитным полям.

Это дает возможность создать экономичные и дешевые интегральные изоляторы, которые обладают устойчивостью к внешним факторам. Одним из недостатков развязки на основе конденсаторов является отсутствие дифференциального сигнала, в отличие от гальванической развязки индуктивного вида. В результате помехи и шум будут проходить вместе с рабочим сигналом.

Поэтому для нормальной работы помехи и частоту сигнала разделяют таким образом, чтобы емкость оказывала незначительное сопротивление рабочему сигналу, а для помех была бы хорошей преградой. Так же как и в трансформаторной развязке, здесь применяется кодирование сигнала с дальнейшим его детектированием.

Недостатком конденсаторной развязки можно назвать невозможность передачи данных с постоянной составляющей. Емкостная гальваноразвязка – это наиболее дешевый вариант развязки электрических цепей. Однако из-за своей малой эффективности и отсутствия защиты от помех он не нашел широкого применения.

Электромеханическая развязка

Принцип работы электромеханического варианта развязки заключается в использовании реле, которое служит для соединения электрических цепей при определенных изменениях входящих данных. Такую развязку называют релейной.

Электромагнитное реле из-за своего простого принципа работы и повышенной надежности получило широкую популярность автоматических системах и защитных схемах электроустановок. Такие реле разделяют по виду рабочего тока на реле переменного и постоянного тока.

Реле, функционирующие на постоянном токе в свою очередь разделяют на поляризованные и нейтральные. Поляризованные реле работают в зависимости от полярности сигнала управления, реагируя соответствующим образом. Работа нейтрального реле не зависит от направления тока (полярности), который протекает по обмотке.

Действие электромагнитных реле заключается в применении электромагнитных сил, образующихся в металлическом сердечнике во время протекания тока по обмотке. Элементы реле закрепляются на основании, а сверху закрываются крышкой. Над сердечником смонтирован подвижный якорь, выполненный в виде пластины, с несколькими контактами, напротив которых расположены парные стационарные контакты.

В первоначальном положении якорь притянут пружиной. При включении питания электромагнит преодолевает усилие пружины и притягивает якорь, тем самым размыкает или замыкает пары контактов, в зависимости от устройства реле.

После отключения питания пружина притягивает якорь в первоначальное положение. Некоторые исполнения реле содержат в схеме электронные компоненты в виде конденсатора, подключенного параллельно контактам для снижения помех и уменьшения искрения, а также резистора, подключенного к катушке для четкости работы реле.

Задачи гальванической изоляции

Гальваническая развязка призвана решать две основные задачи, которые в свою очередь разделяются на несколько определенных задач.

Независимость сигнальных цепей

Обеспечение независимости цепей сигналов при подключении устройств и приборов осуществляется за счет создания гальванической изоляции независимого контура сигналов относительно других цепей, которые имеются в этих устройствах и приборах.

Такая независимость способна решить множество проблем электромагнитной совместимости:
  • Улучшение защиты от помех.
  • Снижение шума в цепи сигналов.
  • Возрастание точности измерения.

Изолированный выход или вход с помощью гальванической развязки часто способствует качественной совместимости с различными устройствами.

В измерительных системах с несколькими каналами для сбора информации гальваническая изоляция бывает:
  • Групповая. Такая развязка выполняется одна одновременно на несколько каналов.
  • Индивидуальная. Ее называют поканальной, так как она выполняется отдельно для каждого канала.
Читайте также:  Как я добавил Bluetooth для iPhone в свою машину
Создание электробезопасности

С помощью гальванической развязки можно сделать безопасной работу с электрооборудованием. Такая электробезопасность будет полностью удовлетворять требованиям соответствующих действующих стандартов. Для электрооборудования при работах по управлению, измерению, а также при лабораторных работах используется ГОСТ52319 – 2005. В нем определены требования к устойчивости изоляции при испытаниях.

Следует отметить, что гальваническая изоляция является технической мерой создания электробезопасности, поэтому ее рассматривают совместно с различными защитами и блокировками.

Недостатки

Главным недостатком гальванической развязки цепи является высокий уровень помех. Однако в схемах с низкой частотой эта задача решается подключением аналоговых и цифровых фильтров.

В высокочастотных цепях емкость системы по отношению к земле и емкость между катушками трансформатора является ограничивающим фактором по отношению к преимуществам систем с гальванической развязкой. Емкость с землей можно снизить с помощью оптического кабеля и уменьшения геометрических размеров изолированной системы.

Популярной ошибкой при использовании цепей с гальванической изоляцией является неправильное понимание такого термина, как «напряжение изоляции». Если эта величина в модуле ввода равна 3000 В, это отнюдь не говорит о том, что на входы модуля можно подавать такую величину напряжения при эксплуатации.

В описаниях импортных устройств гальванической изоляции не всегда имеется толковое объяснение этому понятию. В отечественной литературе по импортным приборам и устройствам неоднозначно описывается параметр напряжения изоляции. Одни описывают напряжение, допустимое при работе изоляции длительное время (рабочее напряжение).

Другие этот параметр объясняют напряжением при испытании изоляции. При этом напряжение прикладывают к изоляции в течение определенного времени. Напряжение при испытании может в несколько раз быть выше рабочего напряжения, и служит для ускоренных методов испытаний в процессе эксплуатации. Воздействие на изоляцию, определяемое таким высоким напряжением, зависит от продолжительности тестового импульса.

Гальваническая развязка (Часть 1). Виды и работа

Принцип изоляции электрической цепи от других цепей в одном устройстве называется гальваническая развязка или изоляция. С помощью такой изоляции осуществляется передача сигнала или энергии от одной электрической цепи к другой, без прямого контакта между цепями.

Гальваническая развязка дает возможность обеспечения независимости цепи сигналов, так как образуется независимый токовый контур сигнальной цепи от других контуров, в цепях обратной связи и при измерениях. Для электромагнитной совместимости гальваническая развязка является оптимальным решением, так как увеличивается точность измерений, повышается защита от помех.

Принцип действия

Чтобы понять принцип работы гальванической развязки, рассмотрим, как это реализуется в конструкции трансформатора.

Первичная обмотка электрически изолирована от вторичной обмотки. Между ними нет контакта, и не возникает никакого тока, если, конечно, не считать аварийный режим с пробоем изоляции или виткового замыкания. Однако разность потенциалов в катушках может быть значительной.

В результате, если даже вторичная обмотка будет связана электрически с корпусом устройства, а значит и с землей, то все равно на корпусе не возникнет паразитных токов, которые были бы опасны для работников и оборудования.

Виды

Такая изоляция электрических цепей обеспечивается различными методами с применением всевозможных электронных элементов и деталей. Например, трансформаторы, конденсаторы и оптроны способны осуществлять передачу электрических сигналов без непосредственного контакта. Участки цепи взаимодействуют через световой поток, магнитное или электростатическое поле. Рассмотрим основные виды гальванической изоляции.

Индуктивная развязка

Для построения трансформаторной (индуктивной) развязки необходимо применить магнитоиндукционный элемент, который называется трансформатором. Он может быть как с сердечником, так и без него.

При развязке трансформаторного вида применяют трансформаторы с коэффициентом трансформации, равным единице. Первичная катушка трансформатора соединяется с источником сигнала, вторичная – с приемником. Для развязки цепей по такой схеме можно применять магнитомодуляционные устройства на основе трансформаторов.

При этом напряжение на выходе, которое имеется на вторичной обмотке трансформатора, будет напрямую зависеть от напряжения на входе устройства. При таком методе индуктивной развязки существует ряд серьезных недостатков:
  • Значительные габаритные размеры, не позволяющие изготовить компактное устройство.
  • Частотная модуляция гальванической развязки ограничивает частоту пропускания.
  • На качество выходного сигнала влияют помехи несущего входного сигнала.
  • Действие трансформаторной развязки возможно только при переменном напряжении.
Оптоэлектронная развязка

Развитие электронных и информационных технологий полупроводниковых элементов в настоящее время повышает возможности проектирования развязки с помощью оптоэлектронных узлов. Основу таких узлов развязки составляют оптроны (оптопары), которые выполнены на основе тиристоров, диодов, транзисторов и других компонентов, чувствительных к свету.

В оптической части схемы, которая связывает приемник и источник данных, носителем сигнала выступают фотоны. Нейтральность фотонов дает возможность выполнить электрическую развязку выходной и входной цепи, а также согласовать цепи с различными сопротивлениями на выходе и входе.

Читайте также:  Как выбрать шлифовальный круг; Рианто

В оптоэлектронной развязке приемник не оказывает влияние на источник сигнала, поэтому есть возможность модулирования сигналов широкого диапазона частот. Важным преимуществом оптических пар является их компактность, которая позволяет их применение в микроэлектронике.

Оптическая пара состоит из излучателя света, среды, проводящей световой поток, и приемника света, который преобразует его в сигнал электрического тока. Сопротивление выхода и входа в оптроне очень велико, и может достигать нескольких миллионов Ом.

Принцип действия оптрона довольно простой. От светодиода выходит световой поток и направляется на фототранзистор, который воспринимает его и осуществляет дальнейшую работу в соответствии с этим световым сигналом.

Более подробно работа оптопары выглядит следующим образом. Входной сигнал поступает на светодиод, который излучает свет по световоду. Далее световой поток воспринимается фототранзистором, на выходе которого создается перепад или импульс электрического тока выхода. В результате выполняется гальваническая развязка цепей, которые связаны с одной стороны со светодиодом, а с другой – с фототранзистором.

Диодная оптопара

В этой паре источником светового потока является светодиод. Такая пара может применяться вместо ключа и работать с сигналами частотой в несколько десятков МГц.

При необходимости передачи сигнала источник подает на светодиод питание, в результате чего излучается свет, попадающий на фотодиод. Под действием света фотодиод открывается и пропускает через себя ток.

Приемник воспринимает появление тока как рабочий сигнал. Недостатком диодных оптопар является невозможность управления повышенными токами без вспомогательных элементов. Также к недостаткам можно отнести их малый КПД.

Транзисторная оптопара

Такие оптические пары имеют повышенную чувствительность, в отличие от диодных, а значит, являются более экономичными. Но их скорость реакции и наибольшая частота соединения оказывается меньше. Транзисторные оптические пары обладают незначительным сопротивлением в открытом виде, и большим в закрытом состоянии.

Управляющие токи для транзисторной пары выше выходного тока диодной пары. Транзисторные оптроны можно применять разными способами:
  • Без вывода базы.
  • С выводом базы.

Без вывода базы коллекторный ток будет напрямую зависеть от тока светодиода, но транзистор будет иметь длительное время отклика, так как цепь базы всегда открыта.

В случае с выводом базы есть возможность увеличить скорость реакции подключением вспомогательного сопротивления между эмиттером и базой транзистора. Тогда возникает эффект, при котором транзистор не переходит в состояние проводимости до тех пор, пока диодный ток не достигнет значения, необходимого для падения напряжения на резисторе.

Такая гальваническая развязка обладает некоторыми преимуществами:

  • Широкий интервал напряжений развязки (до 0,5 кВ). Это играет большую роль в проектировании систем ввода информации.
  • Гальваническая развязка может функционировать с высокой частотой, достигающей нескольких десятков МГц.
  • Компоненты схемы такой развязки имеют незначительные габаритные размеры.

При отсутствии гальванической изоляции наибольший ток, который проходит между цепями, может ограничиться только малыми электрическими сопротивлениями. В результате это приводит к возникновению выравнивающих токов, которые причиняют вред элементам электрической цепи и работника, которые случайно прикасаются к незащищенному электрооборудованию.

Гальваническая развязка аналогового сигнала

В этой статье речь пойдет в первую очередь об оптической развязке аналогового сигнала. Будет рассматриваться бюджетный вариант. Также основное внимание уделяется быстродействию схемотехнического решения.

Способы развязки аналогового сигнала

Небольшой обзор. Существует три основных способа гальванической развязки аналогового сигнала: трансформаторный, оптический и конденсаторный. Первые два нашли наибольшее применение. На сегодняшний день существует целый класс устройств, которые называются изолирующие усилители или развязывающие усилители (Isolated Amplifier). Такие устройства передают сигнал по средствам его преобразования (в схеме присутствует модулятор и демодулятор сигнала).

Рис.1. Общая схема изолирующих усилителей.

Есть устройства как для передачи аналогового сигнала по напряжению (ADUM3190, ACPL-C87), так и специализированные, для подключения непосредственно к токовому шунту (SI8920, ACPL-C79, AMC1200). В данной статье мы не будем рассматривать дорогие устройства, однако перечислим некоторые из них: iso100, iso124, ad202..ad215 и др.

Существует также другой класс устройств – развязывающие оптические усилители с линеаризующей обратной связью (Linear Optocoupler) к этим устройствам относятся il300, loc110, hcnr201. Принцип действия этих устройств легко понять, посмотрев на их типовую схему подключения.

Рис.2. Типовая схема для развязывающих оптических усилителей.

Подробнее о развязывающих усилителях вы можете почитать: А. Дж. Пейтон, В. Волш «Аналоговая электроника на операционных усилителях» (глава 2), также будет полезен документ AN614 «A Simple Alternative To Analog Isolation Amplifiers» от silicon labs, там есть хорошая сравнительная таблица. Оба источника есть в интернете.

Специальные микросхемы оптической развязки сигнала

Теперь к делу! Для начала сравним три специализированных микросхемы: il300, loc110, hcnr201. Подключенные по одной и той же схеме:

Рис.3. Тестовая схема для il300, hcnr201 и loc110.

Разница только в номиналах для il300, hcnr201 R1,R3=30k, R2=100R, а для loc110 10k и 200R соответственно (я подбирал разные номиналы чтобы добиться максимального быстродействия, но при этом не выйти за допустимые пределы, например, по току излучающего диода). Ниже приведены осциллограммы, которые говорят сами за себя (здесь и далее: синий – входной сигнал, желтый — выходной).

Читайте также:  Треугольные рычаги подвески (назначение, установка, отзывы) - Как отремонтировать ВАЗ

Рис.4. Осциллограмма переходного процесса il300.

Рис.5. Осциллограмма переходного процесса hcnr201.

Рис.6. Осциллограмма переходного процесса loc110.

Теперь рассмотрим микросхему ACPL-C87B (диапазон входного сигнала 0..2В). Честно говоря с ней я провозился достаточно долго. У меня в наличии было две микросхемы, после того как получил неожиданный результат на первой, со второй обращался очень аккуратно, особенно при пайке. Собирал всё по схеме, указанной в документации:

Результат один и тот же. Подпаивал керамические конденсаторы непосредственно вблизи ножек питания, менял ОУ (естественно проверял его на других схемах), пересобирал схему и т.д. В чем собственно загвоздка: выходной сигнал имеет значительные флуктуации.

Несмотря на то, что производитель обещает уровень шума выходного сигнала 0.013 mVrms и для варианта «B» точность ±0.5%. В чем же дело? Возможно ошибка в документации, поскольку с трудом верится в 0.013 mVrms. Непонятно. Но посмотрим в графу Test Conditions/Notes напротив Vout Noise и на Рис.12 документации:

Рис.9. Зависимость уровня шума от величины входного сигнала и частоты выходного фильтра.

Здесь картина немного проясняется. Видимо производитель говорит нам о том, что мы можем задушить эти шумы через ФНЧ. Ну что ж, спасибо за совет (иронично). Зачем вот только всё это таким хитрым образом вывернули. Скорее всего понятно зачем. Ниже приведены графики без и с выходным RC фильтром (R=1k, C=10nF (τ=10µS))

Рис.10. Осциллограмма переходного процесса ACPLC87 без и с выходным фильтром.

Применение оптопар общего назначения для развязки сигнала

Теперь перейдем к самому интересному. Ниже приведены схемы, которые я нашел в интернете.

Рис.11. Типовая схема оптической развязки аналогового сигнала на двух оптопарах.

Рис.12. Типовая схема оптической развязки аналогового сигнала на двух оптопарах.

Рис.13. Типовая схема оптической развязки аналогового сигнала на двух оптопарах.

Такое решение имеет как преимущества, так и недостатки. К преимуществу отнесем большее напряжение изоляции, к недостаткам то, что две микросхемы могут значительно отличаться по параметрам, поэтому кстати рекомендуется использовать микросхемы из одной партии.

Я собрал эту схему на микросхеме 6n136:

Рис.14. Осциллограмма переходного процесса развязки на 6N136.

Получилось, но медленно. Пробовал собирать и на других микросхемах (типа sfh615), получается, но тоже медленно. Мне надо было быстрее. К тому же часто схема не работает из-за возникающих автоколебаний (в таких случаях говорят САР неустойчива))) Помогает увеличение номинала конденсатора С2 рис. 16.

Один знакомый посоветовал отечественную оптопару АОД130А. Результат на лицо:

Рис.15. Осциллограмма переходного процесса развязки на АОД130А.

Рис.16: Схема развязки на АОД130А.

Потенциометр нужен один (RV1 или RV2) в зависимость от того будет выходной сигнал меньше или больше входного. В принципе можно было поставить только один RV=2k последовательно с R3=4.7k, ну или вообще оставить только RV2=10k без R3. Принцип понятен: иметь возможность подстройки в районе 5k.

Микросхема трансформаторной развязки сигнала

Перейдем к трансформаторному варианту. Микросхема ADUM3190 в двух вариантах на 200 и 400 кГц (у меня на 400 — ADUM3190TRQZ), также есть микросхема на более высокое напряжение изоляции ADUM4190. Замечу, корпус самый маленький из всех – QSOP16. Выходное напряжение Eaout от 0.4 до 2.4В. В моей микросхеме выходное напряжение смещения около 100мВ (видно на осциллограмме рис. 18). В целом работает неплохо, но лично меня несовсем устраивает выходной диапазон напряжения. Собрано по схеме из документации:

Рис.17. Схема ADUM3190 из документации.

Рис.18. Осциллограмма переходного процесса ADUM3190.

Итоги

Подведем итог. На мой взгляд наилучшим вариантом является схема на отечественных АДО130А (где они их только взяли?!). Ну и напоследок небольшая сравнительная таблица:

Микросхема tr+задерж. (по осцилл.), мкс tf+задерж. (по осцилл.), мкс Диап. напряж., В Напряж. изоляции, В Шум (по осцилл.) мВп-п. Цена** за шт., р (05.2018)
IL300 10 15 0-3* 4400 20 150
HCNR201 15 15 0-3* 1414 25 150
LOC110 4 6 0-3* 3750 15 150
ACPL-C87B 15 15 0-2 1230 нд 500
6N136 10 8 0-3* 2500 15 50
АОД130А 2 3 0.01-3* 1500 10 90
ADUM3190T 2 2 0.4-2.4 2500 20 210

*- приблизительно (по собранной схеме с оптимизацией по быстродействию)

**- цена средняя по минимальным.
Ярослав Власов

Ссылка на основную публикацию
Газовый баллончик Контроль Ум
Газовый баллончик Контроль Ум отзывы, цена, использование, устройство Представляя собой удобное в применении и максимально эффективное средство для самозащиты, газовые...
Газ 3010 ga технические характеристики
ГАЗ 3110, Волга 3110 ЭТО МОЖЕТ БЫТЬ ИНТЕРЕСНОЕЩЕ ОТ АВТОРА Автодорога P-140 Тула . Автодорога P-134 Смоленск. Трасса А331 «Вилюй»...
ГАЗ 3110 Шаровая революция
Анти ТестДрайв советской ГАЗ-3110; Волга; 2 все полезное находится здесь Похожие статьи ГАЗ 21 «Волга» 1969 года. Тест-драйв на канале...
Газовый котел Bosch 24 квт отзывы владельцев, технические характеристики и инструкция по эксплуатаци
Газовые котлы Bosch отзывы, обзор моделей, характеристики Bosch – одна из самых знаменитых компаний в области производства отопительного оборудования. Обогревательная...
Adblock detector